Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 18;5(10):e13428.
doi: 10.1371/journal.pone.0013428.

Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells

Affiliations

Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells

Kalvin J Gregory et al. PLoS One. .

Abstract

Background: Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors.

Methods and findings: In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis.

Conclusions: These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. DBP-maf inhibits tumor cell migration.
LNCaP (A), LNCaPLN3 (B), PC3M (C) or PC3MLN4 (D) cells were added (150,000/well) to the top chamber of a modified Boyden chamber (+/− DBP-maf) with 10% FBS in the bottom chamber. After 6 hours cells were removed that had not migrated and remaining cells were quantitated using an acid phosphatase assay. Results were normalized to control. Experiments were performed a minimum of three times and error is shown as +/− SD. Compared to cell growth without DBP-maf, adding DBP-maf had a statistically significant overall reduction of cell migration at 30% (P = 0.0003) for the combined four tumor cell types. Individual significant reduction rates were found with each of these tumor cell types. Compared to control, significant reduction was seen with DBP-maf at (A) 20% P = 0.0022 (B) 20% P = 0.0029 (C) 10% P = .0045 (D) 30% P = .0094. n = 3.
Figure 2
Figure 2. A DBP-maf peptide inhibits tumor cell migration.
LNCaP (A), LNCaPLN3 (B), PC3M (C) or PC3MLN4 (D) cells were added (150,000/well) to the top chamber of a modified Boyden chamber (+/− DBP-maf) with 10% FBS in the bottom chamber. After 6 hours cells were removed that had not migrated and remaining cells were quantitated using an acid phosphatase assay. Results were normalized to control. Experiments were performed a minimum of three times and error is shown as +/− SD. Compared to migration without DBP-maf, adding DBP-maf had a statistically significant reduction of migration at 40% (P<0.0001) for the combination of all four tumor cell types. Individual significant reduction rates were found with each of these tumor cell types. Compared to control, significant reduction was seen with DBP-maf at (A) 30% P = 0.0038 (B) 40% P = 0.0016 (C) 20% P = .0038 (D) 40% P = .0005. n = 3.
Figure 3
Figure 3. DBP-maf inhibits tumor cell proliferation.
LNCaP (A), LNCaPLN3 (B), PC3M (C) or PC3MLN4 (D) cells were seeded in 24 well dishes overnight, then medium +/− DBP-maf was added with 1% FBS. After 72 hours cells were quantitated using an acid phosphatase assay. Results were normalized to control. Experiments were performed a minimum of three times and error is shown as +/− SD. Compared to control, significant reduction was seen with DBP-maf at (A) 50% P = 0.0001 (B) 50% P = 0.0001 (C) no significant reduction (D) 40% P = .0073. n = 3.
Figure 4
Figure 4. DBP-maf inhibits expression of uPAR in LNCaPLN3 cells.
LNCaP and LNCaPLN3, cells were treated with DBP or DBP-maf (0.001 and 1 µg/mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were amplified by real-time quantitative PCR.
Figure 5
Figure 5. DBP-maf inhibits expression of uPAR in PC3M cells.
PC3M, and PC3MLN4 cells were treated with DBP or DBP-maf (0.001 and 1 µg/mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were amplified by real-time quantitative PCR. p<0.05.
Figure 6
Figure 6. DBP-maf peptide does not inhibit expression of uPAR in PC3M or LNCaPLN3 cells.
LNCaPLN3 (A) and PC3M cells (B) were treated with DBP or DBP-maf (0.001 and 1 µg/mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were amplified by real-time quantitative PCR. p<0.05.
Figure 7
Figure 7. DBP-maf inhibits protein expression of uPAR.
LNCaP, LNCaPLN3, PC3M, and PC3MLN4 were treated with DBP or DBP-maf and incubated for 24 hours (A) then harvested and immunoblotted using an anti-uPAR antibody. LnCaPLN3 cells at 72 hours (B). p<0.05.

Similar articles

Cited by

References

    1. Cooke NE, David EV. Serum vitamin D-binding protein is a third member of the albumin and alpha fetoprotein gene family. J Clin Invest. 1985;76:2420–2424. - PMC - PubMed
    1. Kawakami M, Blum CB, Ramakrishnan R, Dell RB, Goodman DS. Turnover of the plasma binding protein for vitamin D and its metabolites in normal human subjects. J Clin Endocrinol Metab. 1981;53:1110–1116. - PubMed
    1. Yamamoto N, Naraparaju VR. Vitamin D3-binding protein as a precursor for macrophage activating factor in the inflammation-primed macrophage activation cascade in rats. Cell Immunol. 1996;170:161–167. - PubMed
    1. Kisker O, Onizuka S, Becker CM, Fannon M, Flynn E, et al. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003;5:32–40. - PMC - PubMed
    1. Kanda S, Mochizuki Y, Miyata Y, Kanetake H, Yamamoto N. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis. J Natl Cancer Inst. 2002;94:1311–1319. - PubMed

Publication types

Substances