Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 14;6(10):e1001148.
doi: 10.1371/journal.ppat.1001148.

Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63

Affiliations

Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63

Irazú Contreras et al. PLoS Pathog. .

Abstract

Leishmania parasites have evolved sophisticated mechanisms to subvert macrophage immune responses by altering the host cell signal transduction machinery, including inhibition of JAK/STAT signalling and other transcription factors such as AP-1, CREB and NF-κB. AP-1 regulates pro-inflammatory cytokines, chemokines and nitric oxide production. Herein we show that upon Leishmania infection, AP-1 activity within host cells is abolished and correlates with lower expression of 5 of the 7 AP-1 subunits. Of interest, c-Jun, the central component of AP-1, is cleaved by Leishmania. Furthermore, the cleavage of c-Jun is dependent on the expression and activity of the major Leishmania surface protease GP63. Immunoprecipitation of c-Jun from nuclear extracts showed that GP63 interacts, and cleaves c-Jun at the perinuclear area shortly after infection. Phagocytosis inhibition by cytochalasin D did not block c-Jun down-regulation, suggesting that internalization of the parasite might not be necessary to deliver GP63 molecules inside the host cell. This observation was corroborated by the maintenance of c-Jun cleavage upon incubation with L. mexicana culture supernatant, suggesting that secreted, soluble GP63 could use a phagocytosis-independent mechanism to enter the host cell. In support of this, disruption of macrophage lipid raft microdomains by Methyl β-Cyclodextrin (MβCD) partially inhibits the degradation of full length c-Jun. Together our results indicate a novel role of the surface protease GP63 in the Leishmania-mediated subversion of host AP-1 activity.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Infection with different species of Leishmania inhibits AP-1 DNA binding activity.
(A) B10R macrophages were infected for 0.5, 1, 3 and 6 hr with L. donovani, at a ratio 20∶1 parasite/macrophage. Nuclear proteins were isolated and EMSA for AP-1 DNA binding activity was performed. A consensus DNA sequence for SP-1 binding was used as non-specific competitor (NSCO). A 100× molar excess of AP-1 probe was used as a specific competitor (SCO). (B) B10R macrophages were infected for 1 hr with L. mexicana, L. major, L donovani infantum or L. tarentolae and treated as in (A).
Figure 2
Figure 2. AP-1 subunits are degraded after infection with Leishmania parasites.
(A) Western blot analysis of AP-1 subunit proteins extracted from B10R macrophages infected with L. donovani for 1 and 3 hr. β-actin was used as a loading control. (B) Super shift assays of B10R macrophages infected with L. donovani for 1 hr. Nuclear proteins were super shifted using antibodies against c-Jun, Jun B, Jun D, c-Fos, Fos B, Fra 1 and Fra 2 AP-1 subunits.
Figure 3
Figure 3. Subcellular localization of AP-1 subunits.
B10R macrophages were infected with L. donovani for 1 and 3 hr. Cytoplasmic and nuclear distribution of the AP-1 subunits was monitored by Western Blot analysis. β-actin was used as a loading control for cytoplasmic fraction, and Jun D for nuclear fraction.
Figure 4
Figure 4. Role of Leishmania surface molecules in the inactivation of AP-1.
(A) EMSA for AP-1 DNA binding activity of nuclear extracts from B10R macrophages infected for 1 hr with L. donovani 1S2D (LPG+/+), L. donovani LPG−/−, L. major (WT), L. major GP63 −/− or L. major GP63 Rescued (GP63 R) promastigotes. A consensus DNA sequence for SP-1 binding was used as non-specific control (NSCO). A 100× molar excess of AP-1 probe was used as a specific competitor (SCO). 1 hr stimulation with LPS (100 ng/ml) was used as a positive control for the induction of AP-1 DNA binding. (B) Macrophages were infected for 1 hr with L. major (WT), L. major GP63 −/− or L. major Rescued promastigotes at 20∶1 ratio. WB of AP-1 subunits was performed with the total cell lysate. β-actin was used as a loading control.
Figure 5
Figure 5. GP63 delivery into the host cell is mediated via lipid raft.
(A) B10R macrophages were pre-treated or not with 2 µM cytochalasin D for 1 hr and then infected with L. mexicana for indicated times. (B) B10R macrophages were incubated with either with whole parasite or culture supernatant of L. mexicana promastigotes. Macrophages were pre-treated or not with 20 mM of methyl β-ciclodextrin (MβCD) for 1 hr and infected with L. mexicana promastigotes (C), incubated with L. mexicana supernatant (D) or recombinant GP63 (rGP63) (E). For all the Figures, total cell extracts and β-actin as a loading control were used.
Figure 6
Figure 6. Subcellular localization of GP63.
(A) B10R macrophages were infected for 1 hr with L. major (WT), L. major GP63−/− or L. major GP63 Rescued and GP63 distribution in the cytoplasmic and nuclear extracts was monitored by WB. β-actin and Jun B were used as fractioning controls. (B) B10R macrophages were infected for 1 hr with L. major (WT). GP63 is shown in green and nuclei were stained with DAPI (blue).
Figure 7
Figure 7. c-Jun interacts with GP63 in nuclear fraction.
Proteins from nuclear extracts of macrophages infected for 1 hr with L. major (WT), L. major GP63 −/− and L. major GP63 Rescued (GP63 R) and nuclear proteins were immunoprecipitated using an anti-c-Jun antibody. GP63 and c-Jun co-immunoprecipitation was evaluated by western blot. H denotes the heavy chain of the immunoglobulin.
Figure 8
Figure 8. GP63 is localized in the perinuclear compartment.
(A) Confocal microscopy images of B10R macrophages showing co-localization of nuclei (blue), c-Jun (red) and GP63 (green) in non-infected (upper panel) and cells infected for 1 hr with L. major (lower panel). (B) Confocal microscopy analysis to evaluate nuclear localization of GP63 (green) and nuclear distribution (upper panel) and degradation of c-Jun (red) in macrophages infected 1 hr with L. major (lower panel). Blue shows cell nuclei. (C) co-localization of nuclei (blue), c-Jun (red) and GP63 (green) in B10R macrophages infected for 1 hr with L. major GP63−/− or L. tarentolae.
Figure 9
Figure 9. Parasite-free GP63 is sufficient to degrade c-Jun.
(A) Exogenous GST-c-Jun was incubated with 500 µl of L. donovani, L. mexicana, L. major, L. major GP63−/− or L. major GP63 Rescued for 30 minutes, and degradation of c-Jun was visualized by WB using anti-GST antibody. (B) Jun B, Jun D, c-Fos, Fos B, Fra 1 and Fra 2 protein sequences showing putative GP63 cleavage sites. (C) c-Jun sequence analysis showing the putative site of GP63 cleavage.

Similar articles

Cited by

References

    1. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–318. - PubMed
    1. Piscopo TV, Mallia AC. Leishmaniasis. Postgrad Med J. 2006;82:649–657. - PMC - PubMed
    1. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18:293–305. - PMC - PubMed
    1. Forget G, Gregory DJ, Olivier M. Proteasome-mediated degradation of STAT1α following infection of macrophages with Leishmania donovani. J Biol Chem. 2005;280:30542–30549. - PubMed
    1. Gregory DJ, Contreras I, Forget G, Olivier M. A novel form of NF-κB is induced by Leishmania infection: Involvement in macrophage gene expression. Eur J Immunol. 2008;38:1071–1081. - PubMed

Publication types

MeSH terms