Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 1;70(21):8537-46.
doi: 10.1158/0008-5472.CAN-10-1701. Epub 2010 Oct 26.

A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers

Affiliations

A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers

Josep Lluís Parra-Palau et al. Cancer Res. .

Abstract

Current classification of breast cancers depends in great part on the expression of human epidermal growth factor receptor 2 (HER2), a cell surface tyrosine kinase receptor, and estrogen receptor (ER), the nuclear receptor for estrogen. In addition to reliable biomarkers, these receptors are targets of effective and widely used antitumor drugs. During malignant progression, HER2 and ER can establish an intricate cross-talk. In some cases, HER2 overexpression leads to the downregulation of ER and undermining of anti-ER therapies. A subgroup of HER2-positive breast cancer patients with poor prognosis expresses a heterogeneous collection of HER2 carboxy-terminal fragments (CTF) collectively known as p95HER2. One of these fragments, 611-CTF, is oncogenic in a variety of preclinical models. However, because of the lack of an appropriate tool to specifically analyze its levels in the clinical setting, the value of 611-CTF as a biomarker has not been established yet. Here, we show that 611-CTF induces resistance to antiestrogen therapy and a more pronounced down-modulation of ER than that induced by full-length HER2. To validate this effect in breast cancer samples, we developed specific anti-611-CTF antibodies. With these antibodies, we showed that, whereas the frequency of ER positivity in HER2-positive/611-CTF-negative tumors (72.6%) is similar to that reported for HER2-negative tumors (70-80%), the number of ER-positive tumors in the 611-CTF-positive subgroup is very low (31.2%). These results reveal a mechanism of ER regulation mediated by HER2, which suggests a new strategy to improve responses to endocrine therapy in breast cancer.

PubMed Disclaimer

Publication types

MeSH terms