Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Sep 25;253(18):6331-4.

The K+/site and H+/site stoichiometry of mitochondrial electron transport

  • PMID: 210179
Free article

The K+/site and H+/site stoichiometry of mitochondrial electron transport

B Reynafarje et al. J Biol Chem. .
Free article

Abstract

Electrode measurements of the average number of H+ ejected and K+ taken up (in the presence of valinomycin) per pair of electrons passing the energy-conserving sites of the respiratory chain of rat liver and rat heart mitochondria have given identical values of the H+/site and 5+/site ratios very close to 4 in the presence of N-ethylmaleimide, an inhibitor of interfering respiration-coupled uptake of H+ + H2PO4-. The K+/site uptake ratio of 4 not only shows that inward movement of K+ provides quantitative charge-compensation for the 4 H+ ejected, but also confirms that 4 charges are separated per pair of electrons per site. When N-ethylmaleimide is omitted, the H+/site ejection ratio is depressed, because of the interfering secondary uptake of H/+ with H2PO4- on the phosphate carrier, but the K+/site uptake ratio remains at 4.0. Addition of phosphate or acetate, which can carry H+ into respiring mitochondria, further depresses the H+/site ratio, but does not affect the K+/site ratio, which remains at 4.0. These and other considerations thus confirm our earlier stoichiometric measurements that the average H+/site ratio is 4.0 and also show that the K+/site uptake ratio can be used as a measure of the intrinsic H+/site ratio, regardless of the presence of phosphate in the medium and without the necessity of adding N-ethylmaleimide or other inhibitors of H+ + H2PO4- transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources