Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 24;148(2-4):333-40.
doi: 10.1016/j.vetmic.2010.09.024. Epub 2010 Oct 27.

Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence

Affiliations

Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence

Laetitia Bonifait et al. Vet Microbiol. .

Abstract

Streptococcus suis is a major swine pathogen that is responsible for severe infections such as meningitis, endocarditis, and septicemia. S. suis is also recognized as a zoonotic agent and expresses several virulence factors. The recently identified subtilisin-like protease (SspA) of S. suis plays an important role in the pathogenicity of this bacterium in animal models. The objective of the present study was to clone, purify, and characterize the SspA of serotype 2 S. suis P1/7. The SSU0757 gene encoding SspA was amplified and a 4798-bp DNA fragment was obtained. It was cloned into the expression plasmid pBAD/HisB and then inserted into Escherichia coli to overproduce the protein. The recombinant protease was purified by chromatography procedures and showed a molecular weight of 170 kDa by SDS-PAGE. Its activity was optimal at pH 7 and at temperatures ranging from 25°C to 37°C. It had a high specificity for the chromogenic substrate succinyl-Ala-Ala-Pro-Phe-pNa while specific inhibitors of serine proteases inhibited its activity. In addition to degrading gelatin, the protease hydrolyzed the Aα chain of fibrinogen, which prevented fibrin formation by thrombin. The recombinant subtilisin-like protease also showed toxicity towards brain microvascular endothelial cells. Lastly, sera from pigs infected with S. suis reacted with the recombinant SspA, indicating that it is produced during infections. In conclusion, the SspA of S. suis shared similarities with subtilisin-like proteases produced by other pathogenic streptococci and may contribute to the pathogenic process of S. suis infections.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources