CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data
- PMID: 21034466
- PMCID: PMC2987814
- DOI: 10.1186/1472-6807-10-39
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data
Abstract
Background: In conjunction with the recognition of the functional role of internal dynamics of proteins at various timescales, there is an emerging use of dynamic structural ensembles instead of individual conformers. These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill all NMR parameters originating from 10(16) - 10(17) molecules in the sample tube. Thus, the accuracy of dynamic conformational ensembles should be evaluated differently to that of single conformers.
Results: We constructed the web application CoNSEnsX (Consistency of NMR-derived Structural Ensembles with eXperimental data) allowing fast, simple and convenient assessment of the correspondence of the ensemble as a whole with diverse independent NMR parameters available. We have chosen different ensembles of three proteins, human ubiquitin, a small protease inhibitor and a disordered subunit of cGMP phosphodiesterase 5/6 for detailed evaluation and demonstration of the capabilities of the CoNSEnsX approach.
Conclusions: Our results present a new conceptual method for the evaluation of dynamic conformational ensembles resulting from NMR structure determination. The designed CoNSEnsX approach gives a complete evaluation of these ensembles and is freely available as a web service at http://consensx.chem.elte.hu.
Figures







Similar articles
-
Evaluation and Selection of Dynamic Protein Structural Ensembles with CoNSEnsX.Methods Mol Biol. 2020;2112:241-254. doi: 10.1007/978-1-0716-0270-6_16. Methods Mol Biol. 2020. PMID: 32006289
-
CoNSEnsX+ Webserver for the Analysis of Protein Structural Ensembles Reflecting Experimentally Determined Internal Dynamics.J Chem Inf Model. 2017 Aug 28;57(8):1728-1734. doi: 10.1021/acs.jcim.7b00066. Epub 2017 Aug 3. J Chem Inf Model. 2017. PMID: 28703583
-
Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.J Chem Inf Model. 2019 May 28;59(5):1743-1758. doi: 10.1021/acs.jcim.8b00928. Epub 2019 Mar 18. J Chem Inf Model. 2019. PMID: 30840442 Review.
-
COCO: a simple tool to enrich the representation of conformational variability in NMR structures.Proteins. 2009 Apr;75(1):206-16. doi: 10.1002/prot.22235. Proteins. 2009. PMID: 18831040
-
Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell.Chem Rev. 2016 Jun 8;116(11):6516-51. doi: 10.1021/acs.chemrev.5b00562. Epub 2016 Jan 25. Chem Rev. 2016. PMID: 26807783 Free PMC article. Review.
Cited by
-
Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases.Sci Rep. 2017 Mar 16;7:44504. doi: 10.1038/srep44504. Sci Rep. 2017. PMID: 28300139 Free PMC article.
-
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles.bioRxiv [Preprint]. 2023 Apr 28:2023.04.24.538094. doi: 10.1101/2023.04.24.538094. bioRxiv. 2023. Update in: Brief Bioinform. 2023 Jul 20;24(4):bbad242. doi: 10.1093/bib/bbad242. PMID: 37163076 Free PMC article. Updated. Preprint.
-
Simultaneous Assignment and Structure Determination of Proteins From Sparsely Labeled NMR Datasets.Front Mol Biosci. 2021 Nov 24;8:774394. doi: 10.3389/fmolb.2021.774394. eCollection 2021. Front Mol Biosci. 2021. PMID: 34912846 Free PMC article.
-
Ensemble-based interpretations of NMR structural data to describe protein internal dynamics.Molecules. 2013 Aug 30;18(9):10548-67. doi: 10.3390/molecules180910548. Molecules. 2013. PMID: 23999727 Free PMC article. Review.
-
Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs.J Mol Biol. 2022 Sep 15;434(17):167569. doi: 10.1016/j.jmb.2022.167569. Epub 2022 Apr 1. J Mol Biol. 2022. PMID: 35378118 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources