Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;74(4):658-67.
doi: 10.1016/j.ecoenv.2010.10.016. Epub 2010 Oct 28.

Metal-metal interactions of dietary cadmium, copper and zinc in rainbow trout, Oncorhynchus mykiss

Affiliations

Metal-metal interactions of dietary cadmium, copper and zinc in rainbow trout, Oncorhynchus mykiss

Collins Kamunde et al. Ecotoxicol Environ Saf. 2011 May.

Abstract

The influence of metal-metal interactions on uptake, accumulation, plasma transport and chronic toxicity of dietary Cu, Cd and Zn in rainbow trout (Oncorhynchus mykiss) was explored. Juvenile rainbow trout were fed diets supplemented with (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture at 2.5% body weight daily ration for 28 days. Complex interactions among the metals dependent on the tissue/organ, metals ratios and duration of exposure were observed. While Zn did not accumulate, whole-body Cd and Cu concentrations increased following linear and saturation patterns, respectively. Early enhanced whole-body Cu accumulation in fish exposed to the metals mixture was correlated with reduced Cd concentration whereas late enhancement of Cd accumulation corresponded with elevated Cd concentration. This suggests early mutual antagonism and late cooperation between Cd and Cu probably due to interactions at temporally variable metal accumulation sites. At the level of uptake, Cd and Cu were either antagonistic or mutually increased the concentrations of each other depending on the duration of exposure and section of the gut. At the level of transport, enhanced Cd accumulation in plasma was closely correlated with reduced concentrations of both Zn and Cu indicating competitive binding to plasma proteins and/or antagonism at uptake sites. Compared to the Cu alone exposure, Cu concentrations were either lower (gills and carcasses) or higher (liver and kidney) in fish exposed to the metals mixture. On the other hand, Cd accumulation was enhanced in livers and carcasses of fish exposed to the mixture compared to those exposed to Cd alone, while Zn stimulated Cu accumulation in gills. Chronic toxicity was demonstrated by elevated malondialdehyde levels in livers and reduced concentrations of Zn and Cu in plasma. Overall, interactions of Cd, Cu and Zn are not always consistent with the isomorphous competitive binding theory.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources