Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;1814(2):345-54.
doi: 10.1016/j.bbapap.2010.10.006. Epub 2010 Oct 28.

Surface plasmon resonance study on functional significance of clustered organization of lectin-like oxidized LDL receptor (LOX-1)

Affiliations

Surface plasmon resonance study on functional significance of clustered organization of lectin-like oxidized LDL receptor (LOX-1)

Izuru Ohki et al. Biochim Biophys Acta. 2011 Feb.

Abstract

Lectin-like oxidized low-density lipoprotein (OxLDL) receptor 1 (LOX-1) is the major OxLDL receptor of vascular endothelial cells and is involved in an early step of atherogenesis. LOX-1 exists as a disulfide-linked homodimer on the cell surface, which contains a pair of the ligand-binding domains (CTLD; C-type lectin-like domain). Recent research using living cells has suggested that the clustered state of LOX-1 dimer on the cell is functionally required. These results questioned how LOX-1 exists on the cell to achieve OxLDL binding. In this study, we revealed the functional significance of the clustered organization of the ligand-binding domain of LOX-1 with surface plasmon resonance. Biotinylated CTLD was immobilized on a streptavidin sensor chip to make CTLD clusters on the surface. In this state, the CTLD had high affinity for OxLDL with a dissociation constant (K(D)) in the nanomolar range. This value is comparable to the K(D) measured for LOX-1 on the cell. In contrast, a single homodimeric LOX-1 extracellular domain had lower affinity for OxLDL in the supra-micromolar range of K(D). Monomeric CTLD showed marginal binding to OxLDL. In combination with the analyses on the loss-of-binding mutant W150A, we concluded that the clustered organization of the properly formed homodimeric CTLD is essential for the strong binding of LOX-1 to OxLDL.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources