Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;28(2):1025-31.
doi: 10.1093/molbev/msq286. Epub 2010 Oct 29.

Progressive pseudogenization: vitamin C synthesis and its loss in bats

Affiliations

Progressive pseudogenization: vitamin C synthesis and its loss in bats

Jie Cui et al. Mol Biol Evol. 2011 Feb.

Abstract

For the past 50 years, it was believed that all bats, like humans and guinea pigs, did not synthesize vitamin C (Vc) because they lacked activity of L-gulonolactone oxidase (GULO) in their livers. Humans and guinea pigs lack the activity due to pseudogenization of GULO in their genomes, but there is no genetic evidence to show whether such loss in bats is caused by pseudogenization. Unexpectedly, our successful molecular cloning in one frugivorous bat (Rousettus leschenaultii) and one insectivorous bat (Hipposideros armiger) ascertains that no pseudogenization occurs in these species. Furthermore, we find normal GULO protein expression using bat-specific anti-GULO polyclonal antibodies in bats, evaluated by Western blotting. Most surprisingly, GULO activity assays reveal that these two bat species have retained the ability to synthesize Vc, but at low levels compared with the mouse. It is known that bats in the genus Pteropus have lost GULO activity. We then found that functional constraints acting on the GULO of Pteropus vampyrus (which lost its function) are relaxed. These results imply that the ability to synthesize Vc in bats has not been lost completely in species as previously thought. We also suggest that the evolution of bat GULO genes can be a good model to study genetic processes associated with loss-of-function.

PubMed Disclaimer

Publication types

LinkOut - more resources