Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;32(10):1611-7.
doi: 10.1111/j.1460-9568.2010.07433.x. Epub 2010 Oct 7.

Role for Reelin-induced cofilin phosphorylation in the assembly of sympathetic preganglionic neurons in the murine intermediolateral column

Affiliations

Role for Reelin-induced cofilin phosphorylation in the assembly of sympathetic preganglionic neurons in the murine intermediolateral column

Marie T Krüger et al. Eur J Neurosci. 2010 Nov.

Abstract

Sympathetic preganglionic neurons (SPNs) are located in the intermediolateral column (IMLC) of the spinal cord. This specific localization results from primary and secondary migratory processes during spinal cord development. Thus, following neurogenesis in the neuroepithelium, SPNs migrate first in a ventrolateral direction and then, in a secondary step, dorsolaterally to reach the IMLC. These migratory processes are controlled, at least in part, by the glycoprotein Reelin, which is known to be important for the development of laminated brain structures. In reeler mutants deficient in Reelin, SPNs initially migrate ventrolaterally as normal. However, most of them then migrate medially to become eventually located near the central canal. Here, we provide evidence that in wild-type animals this aberrant medial migration towards the central canal is prevented by Reelin-induced cytoskeletal stabilization, brought about by phosphorylation of cofilin. Cofilin plays an important role in actin depolymerization, a process required for the changes in cell shape during migration. Phosphorylation of cofilin renders it unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. Using immunostaining for phosphorylated cofilin (p-cofilin), we demonstrate that SPNs in wild-type animals, but not in reeler mutants and other mutants of the Reelin signalling cascade, are immunoreactive for p-cofilin. These findings suggest that Reelin near the central canal induces cofilin phosphorylation in SPNs, thereby preventing them from aberrant migration towards the central canal. The results extend our previous studies on cortical neurons in which Reelin in the marginal zone was found to stabilize the leading processes of migrating neurons and terminate the migration process.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources