Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 22;5(10):e13577.
doi: 10.1371/journal.pone.0013577.

Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients

Affiliations

Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients

Adeline Bertola et al. PLoS One. .

Abstract

Background: Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients.

Methodology/principal findings: Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis.

Conclusion/significance: The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Jonathan Barr belongs to the OWL Genomics Company, Bizkaia Technology Park, Spain. This company does not alter the authors' adherence to all PLoS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Upregulation of 17 genes encoding proteins involved in leukocyte recruitment in liver of NASH patients.
The hepatic expression levels of genes were analyzed by real-time quantitative PCR in morbidly obese patients with normal liver histology (S0, n = 6), in morbidly obese patients with severe steatosis (S3, n = 6), and in morbidly obese patients with severe steatosis and NASH (NASH, n = 6). The mRNA levels of genes were normalized to the mRNA levels of RPLP0. Results are expressed relative to the expression levels in S0 patients and expressed as mean±SEM. *P<0.05, compared with S0 patients.
Figure 2
Figure 2. Specific upregulation of genes encoding Th1 cytokines and proteins involved in recognition between APC and T cells in liver of NASH patients.
A. The hepatic expression levels of genes were analyzed by real-time quantitative PCR in morbidly obese patients with normal liver histology (S0, n = 6), in morbidly obese patients with severe steatosis (S3, n = 6), and in morbidly obese patients with severe steatosis and NASH (NASH, n = 6). The mRNA levels of genes were normalized to the mRNA levels of RPLP0. Results are expressed relative to the expression levels in S0 patients and expressed as mean±SEM. *P<0.05, compared with S0patients; §P = 0,033. B. Scheme of recognition between APC and T cells.
Figure 3
Figure 3. Elevated serum levels of CCL2, IP10, IL6 and TNFα are dependent on obesity but not on liver complications.
The serum of 9 lean patients and 70 morbidly obese patients (15 S0 patients, 23 S3 patients and 23 NASH patients with severe steatosis) were used to evaluate the circulating levels of CCL2, IP10, IL6 and TNFα.
Figure 4
Figure 4. CRP gene expression levels in function to liver complications.
The expression levels of CRP were analyzed by real-time quantitative PCR in lean subjects (n = 6 for the liver; n = 4 for the SCAT), in morbidly obese patients with normal liver histology (S0,n = 6), in morbidly obese patients with severe steatosis (S3, n = 6), and in morbidly obese patients with severe steatosis and NASH (NASH, n = 6) in liver and subcutaneous adipose tissue. The mRNA levels of genes were normalized to the mRNA levels of RPLP0. Results are expressed relative to the expression levels in controls and expressed as mean±SEM. *P<0.05, compared with controls.
Figure 5
Figure 5. Elevated serum palmitate levels but not endoxin levels were present in severely steatotic obese patients.
A. The serum of 9 lean patients and 70 morbidly obese patients (15 S0 patients, 23 S3 patients and 23 NASH patients with severe steatosis) was used to evaluate the circulating levels of endotoxin. B. The abundances of palmitate as expressed relative to their values in a commercial serum sample (over 1000 individuals) were evaluated in 8 S0 patients, 9 S3 patients and 8 NASH patients.

References

    1. McCullough AJ. Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol. 2006;40(Suppl 1):S17–29. - PubMed
    1. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology. 2003;37:1202–1219. - PubMed
    1. Valenti L, Ludovica Fracanzani A, Fargion S. The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: two triggers for one disease? Semin Immunopathol 2009 - PubMed
    1. Xu H, Barnes GT, Yang Q, Tan G, Yang D, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–1830. - PMC - PubMed
    1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–1808. - PMC - PubMed

Publication types