Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jan;9(1):109-20.
doi: 10.2174/157016111793744652.

Ezetimibe and reactive oxygen species

Affiliations
Review

Ezetimibe and reactive oxygen species

Minako Yamaoka-Tojo et al. Curr Vasc Pharmacol. 2011 Jan.

Abstract

Ezetimibe is a potent inhibitor of cholesterol absorption that has been approved for the treatment of hypercholesterolemia. Statin, 3-hydroxy-3 methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, is an inhibitor of cholesterol synthesis. Statin is the first-choice drug to reduce low-density lipoprotein (LDL)-cholesterol for patients with hypercholesterolemia, due to its strong effect to lower the circulating LDL-cholesterol levels. Because a high dose of statins causes concern about rhabdomyolysis, it is sometimes difficult to achieve the guideline-recommended levels of LDL-cholesterol in patients with high LDL-cholesterol treated with statin monotherapy. Ezetimibe has been reported to reduce LDL-cholesterol safely with both monotherapy and combination therapy with statins. Ezetimibe is especially expected to be the best pharmacological option for the treatment of patients unable to achieve LDL-cholesterol goals with statins. Reactive oxygen species (ROS) are produced at low levels to maintain physiological redox balance. Oxidative stress results when ROS production exceeds the ability of cells to detoxify ROS. Overproduction of ROS damages cellular components, including lipids, leading to decline in physiological function and cell death. Oxidative stress exacerbates atherosclerosis, the major risk factor for coronary artery disease and ischemic stroke, at every step involves the accumulation of oxidized LDL in the arteries, leading to foam cell formation, plaque development, and plaque rupture. This review focuses on the recent findings of ezetimibe-related atheroprotective effects in vasculature. Moreover, known and proposed mechanisms of how ezetimibe could improve ROS-induced pro-atherosclerotic conditions in vasculature are discussed; these effects may help to explain the mechanisms by which ezetimibe may protect vascular from atherosclerosis.

PubMed Disclaimer

Publication types

MeSH terms