Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2011 Jan;138(1):117-26.
doi: 10.1016/j.clim.2010.10.004. Epub 2010 Nov 1.

GAD-alum treatment induces GAD65-specific CD4+CD25highFOXP3+ cells in type 1 diabetic patients

Affiliations
Randomized Controlled Trial

GAD-alum treatment induces GAD65-specific CD4+CD25highFOXP3+ cells in type 1 diabetic patients

Maria Hjorth et al. Clin Immunol. 2011 Jan.

Abstract

Type 1 diabetes results from autoimmune destruction of insulin producing pancreatic β-cells. We have shown that treatment with alum-formulated glutamic acid decarboxylase 65 (GAD-alum) preserved residual insulin secretion and induced antigen-specific responses in children with recent onset type 1 diabetes. The aim of this study was to further investigate the immunomodulatory effect of GAD-alum, focusing on CD4(+)CD25(high) cells and their association to cytokine secretion. Samples obtained 21 and 30months after the initial injection of GAD-alum or placebo were included in the present study. GAD(65)-stimulation enhanced the percentage of CD4(+)CD25(high)FOXP3(+) cells, but reduced the percentage of CD4(+)CD25(+) cells, in samples from the GAD-alum treated group. Further, the GAD(65)-induced secretion of IL-5, -10, and -13 correlated with the expression of CD4(+)CD25(high)FOXP3(+) cells, but inversely with CD4(+)CD25(+) cells. These new data suggest that GAD-alum treatment induced GAD(65)-specific T cells with regulatory features.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources