Force-extension curves of bacterial flagella
- PMID: 21046183
- DOI: 10.1140/epje/i2010-10664-5
Force-extension curves of bacterial flagella
Abstract
Bacterial flagella assume different helical shapes during the tumbling phase of a bacterium but also in response to varying environmental conditions. Force-extension measurements by Darnton and Berg explicitly demonstrate a transformation from the coiled to the normal helical state (N.C. Darnton, H.C. Berg, Biophys. J. 92, 2230 (2007)). We here develop an elastic model for the flagellum based on Kirchhoff's theory of an elastic rod that describes such a polymorphic transformation and use resistive force theory to couple the flagellum to the aqueous environment. We present Brownian-dynamics simulations that quantitatively reproduce the force-extension curves and study how the ratio Γ of torsional to bending rigidity and the extensional rate influence the response of the flagellum. An upper bound for Γ is given. Using clamped flagella, we show in an adiabatic approximation that the mean extension, where a local coiled-to-normal transition occurs first, depends on the logarithm of the extensional rate.
Similar articles
-
Motor-driven bacterial flagella and buckling instabilities.Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29. Eur Phys J E Soft Matter. 2012. PMID: 22395533
-
Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid.Phys Rev E. 2017 Jun;95(6-1):063106. doi: 10.1103/PhysRevE.95.063106. Epub 2017 Jun 14. Phys Rev E. 2017. PMID: 28709256 Free PMC article.
-
Force-extension measurements on bacterial flagella: triggering polymorphic transformations.Biophys J. 2007 Mar 15;92(6):2230-6. doi: 10.1529/biophysj.106.094037. Epub 2006 Dec 15. Biophys J. 2007. PMID: 17172309 Free PMC article.
-
Flagella-Driven Motility of Bacteria.Biomolecules. 2019 Jul 14;9(7):279. doi: 10.3390/biom9070279. Biomolecules. 2019. PMID: 31337100 Free PMC article. Review.
-
Functional Regulators of Bacterial Flagella.Annu Rev Microbiol. 2019 Sep 8;73:225-246. doi: 10.1146/annurev-micro-020518-115725. Epub 2019 May 28. Annu Rev Microbiol. 2019. PMID: 31136265 Free PMC article. Review.
Cited by
-
Motor-driven bacterial flagella and buckling instabilities.Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29. Eur Phys J E Soft Matter. 2012. PMID: 22395533
-
A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body.Sci Rep. 2017 Dec 1;7(1):16771. doi: 10.1038/s41598-017-16428-9. Sci Rep. 2017. PMID: 29196650 Free PMC article.
-
Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.Sci Rep. 2015 May 20;5:9586. doi: 10.1038/srep09586. Sci Rep. 2015. PMID: 25993019 Free PMC article.
-
Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid.Phys Rev E. 2017 Jun;95(6-1):063106. doi: 10.1103/PhysRevE.95.063106. Epub 2017 Jun 14. Phys Rev E. 2017. PMID: 28709256 Free PMC article.
-
Flagellar arrangements in elongated peritrichous bacteria: bundle formation and swimming properties.Eur Phys J E Soft Matter. 2021 Mar 8;44(2):17. doi: 10.1140/epje/s10189-021-00027-8. Eur Phys J E Soft Matter. 2021. PMID: 33683543 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources