Removal of arsenate from water by adsorbents: a comparative case study
- PMID: 21046433
- DOI: 10.1007/s10653-010-9349-z
Removal of arsenate from water by adsorbents: a comparative case study
Abstract
Laboratory and field filtration experiments were conducted to study the effectiveness of As(V) removal for five types of adsorbent media. The media included activated alumina (AA), modified activated alumina (MAA), granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (TiO₂). In laboratory batch and column experiments, the synthetic challenge water was used to evaluate the effectiveness for five adsorbents. The results of the batch experiments showed that the As(V) adsorption decreased as follows at pH 6.5: TiO₂ > GFO > GFH > MAA > AA. At pH 8.5, however, As(V) removal decreased in the following order: GFO = TiO₂ > GFH > MAA > AA. In column experiments, at pH 6.5, the adsorbed As(V) for adsorbents followed the order: TiO₂ > GFO > GFH, whereas at pH 8.5 the order became: GFO = TiO₂ > GFH when the challenge water containing 50 μg/L of As(V) was used. Field filtration experiments were carried out in parallel at a wellhead in New Jersey. Before the effluent arsenic concentration increased to 10 μg/L, approximately 58,000 and 41,500 bed volumes of groundwater containing an average of 47 μg/L of As(V) were treated by the filter system packed with GFO and TiO₂, respectively. The As(V) adsorption decreased in the following sequence: GFO > TiO₂ > GFH > MAA > AA. Filtration results demonstrated that GFO and TiO₂ adsorbents could be used as media in small community filtration systems for As(V) removal.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
