Subretinal electronic chips allow blind patients to read letters and combine them to words
- PMID: 21047851
- PMCID: PMC3081743
- DOI: 10.1098/rspb.2010.1747
Subretinal electronic chips allow blind patients to read letters and combine them to words
Abstract
A light-sensitive, externally powered microchip was surgically implanted subretinally near the macular region of volunteers blind from hereditary retinal dystrophy. The implant contains an array of 1500 active microphotodiodes ('chip'), each with its own amplifier and local stimulation electrode. At the implant's tip, another array of 16 wire-connected electrodes allows light-independent direct stimulation and testing of the neuron-electrode interface. Visual scenes are projected naturally through the eye's lens onto the chip under the transparent retina. The chip generates a corresponding pattern of 38 × 40 pixels, each releasing light-intensity-dependent electric stimulation pulses. Subsequently, three previously blind persons could locate bright objects on a dark table, two of whom could discern grating patterns. One of these patients was able to correctly describe and name objects like a fork or knife on a table, geometric patterns, different kinds of fruit and discern shades of grey with only 15 per cent contrast. Without a training period, the regained visual functions enabled him to localize and approach persons in a room freely and to read large letters as complete words after several years of blindness. These results demonstrate for the first time that subretinal micro-electrode arrays with 1500 photodiodes can create detailed meaningful visual perception in previously blind individuals.
Figures
Similar articles
-
Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies.Invest Ophthalmol Vis Sci. 2011 Jul 29;52(8):5995-6003. doi: 10.1167/iovs.10-6946. Invest Ophthalmol Vis Sci. 2011. PMID: 21693599 Clinical Trial.
-
Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS.Proc Biol Sci. 2013 Feb 20;280(1757):20130077. doi: 10.1098/rspb.2013.0077. Print 2013 Apr 22. Proc Biol Sci. 2013. PMID: 23427175 Free PMC article. Clinical Trial.
-
Oculomotor behavior of blind patients seeing with a subretinal visual implant.Vision Res. 2016 Jan;118:119-31. doi: 10.1016/j.visres.2015.04.006. Epub 2015 Apr 20. Vision Res. 2016. PMID: 25906684
-
[Subretinal visual implants].Klin Monbl Augenheilkd. 2010 Dec;227(12):940-5. doi: 10.1055/s-0029-1245830. Epub 2010 Dec 14. Klin Monbl Augenheilkd. 2010. PMID: 21157663 Review. German.
-
[Research progress of subretinal implant based on electronic stimulation].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Feb;25(1):212-4, 219. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008. PMID: 18435293 Review. Chinese.
Cited by
-
Redundant safety features in a high-channel-count retinal neurostimulator.IEEE Biomed Circuits Syst Conf. 2014 Oct;2014:216-219. doi: 10.1109/BioCAS.2014.6981701. IEEE Biomed Circuits Syst Conf. 2014. PMID: 27231724 Free PMC article.
-
Full gaze contingency provides better reading performance than head steering alone in a simulation of prosthetic vision.Sci Rep. 2021 May 27;11(1):11121. doi: 10.1038/s41598-021-86996-4. Sci Rep. 2021. PMID: 34045485 Free PMC article.
-
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.Neural Regen Res. 2016 Apr;11(4):652-6. doi: 10.4103/1673-5374.180753. Neural Regen Res. 2016. PMID: 27212930 Free PMC article.
-
Controlled assembly of retinal cells on fractal and Euclidean electrodes.PLoS One. 2022 Apr 6;17(4):e0265685. doi: 10.1371/journal.pone.0265685. eCollection 2022. PLoS One. 2022. PMID: 35385490 Free PMC article.
-
Spatially patterned bi-electrode epiretinal stimulation for axon avoidance at cellular resolution.J Neural Eng. 2021 Nov 15;18(6):10.1088/1741-2552/ac3450. doi: 10.1088/1741-2552/ac3450. J Neural Eng. 2021. PMID: 34710857 Free PMC article.
References
-
- Congdon N., O'Colmain B., Klaver C. C., Klein R., Munoz B., Friedman D. S., Kempen J., Taylor H. R., Mitchell P. 2004. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122, 477–485 - PubMed
-
- Jones B. W., Marc R. E. 2005. Retinal remodeling during retinal degeneration. Exp. Eye Res. 81, 123–13710.1016/j.exer.2005.03.006 (doi:10.1016/j.exer.2005.03.006) - DOI - DOI - PubMed
-
- Zrenner E. 2002. Will retinal implants restore vision? Science 295, 1022–102510.1126/science.1067996 (doi:10.1126/science.1067996) - DOI - DOI - PubMed
-
- Rizzo J. F., 3rd, Wyatt J., Loewenstein J., Kelly S., Shire D. 2003. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci. 44, 5362–536910.1167/iovs.02-0817 (doi:10.1167/iovs.02-0817) - DOI - DOI - PubMed
-
- Dommel N. B., Wong Y. T., Lehmann T., Lovell N. H., Suaning G. J. 2009. A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation. J. Neural Eng. 6, 035006.10.1088/1741-2560/6/3/035006 (doi:10.1088/1741-2560/6/3/035006) - DOI - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
