Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;33(11):1772-7.
doi: 10.1248/bpb.33.1772.

Gustatory signaling in the periphery: detection, transmission, and modulation of taste information

Affiliations
Free article
Review

Gustatory signaling in the periphery: detection, transmission, and modulation of taste information

Mayu Niki et al. Biol Pharm Bull. 2010.
Free article

Abstract

Gustatory signaling begins with taste receptor cells that express taste receptors. Recent molecular biological studies have identified taste receptors and transduction components for basic tastes (sweet, salty, sour, bitter, and umami). Activation of these receptor systems leads to depolarization and an increase in [Ca(2+)](i) in taste receptor cells. Then transmitters are released from taste cells and activate gustatory nerve fibers. The connection between taste cells and gustatory nerve fibers would be specific because there may be only limited divergence of taste information at the peripheral transmission. Recent studies have demonstrated that sweet taste information can be modulated by hormones or other endogenous factors that could act on their receptors in a specific group of taste cells. These peripheral modulations of taste information may influence preference behavior and food intake. This paper summarizes data on molecular mechanisms for detection and transduction of taste signals in taste bud cells, information transmission from taste cells to gustatory nerve fibers, and modulation of taste signals at peripheral taste organs, in particular for sweet taste, which may play important roles in regulating energy homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types