Asp83, Glu113 and Glu134 are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin
- PMID: 2105232
- DOI: 10.1016/0014-5793(90)80080-3
Asp83, Glu113 and Glu134 are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin
Abstract
Site-specific mutagenesis was employed to investigate the proposed contribution of proton-donating residues (Glu, Asp) in the membrane domains of bovine rhodopsin to protonation of the Schiff base-linking protein and chromophore or to wavelength modulation of this visual pigment. Three point-mutations were introduced to replace the highly conserved residues Asp83 by Asn (D83N), Glu113 by Gln (E113 Q) or Glu134 by Asp (E134D), respectively. All 3 substitutions had only marginal effects on the spectral properties of the final pigment (less than or equal to 3 nm blue-shift relative to native rhodopsin). Hence, none of these residues by itself is specifically involved in Schiff base protonation or wavelength modulation of bovine rhodopsin.
Similar articles
-
Effect of carboxylic acid side chains on the absorption maximum of visual pigments.Science. 1989 Nov 17;246(4932):928-30. doi: 10.1126/science.2573154. Science. 1989. PMID: 2573154
-
Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309-13. doi: 10.1073/pnas.86.21.8309. Proc Natl Acad Sci U S A. 1989. PMID: 2573063 Free PMC article.
-
Changing the location of the Schiff base counterion in rhodopsin.Biochemistry. 1992 Oct 27;31(42):10400-5. doi: 10.1021/bi00157a030. Biochemistry. 1992. PMID: 1329948
-
Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.Photochem Photobiol Sci. 2004 Aug;3(8):713-20. doi: 10.1039/b314693f. Epub 2004 Mar 22. Photochem Photobiol Sci. 2004. PMID: 15295625 Review.
-
Spectral tuning of shortwave-sensitive visual pigments in vertebrates.Photochem Photobiol. 2007 Mar-Apr;83(2):303-10. doi: 10.1562/2006-06-27-IR-952. Photochem Photobiol. 2007. PMID: 17576346 Review.
Cited by
-
The lobster carapace carotenoprotein, alpha-crustacyanin. A possible role for tryptophan in the bathochromic spectral shift of protein-bound astaxanthin.Biochem J. 1991 Feb 15;274 ( Pt 1)(Pt 1):79-83. doi: 10.1042/bj2740079. Biochem J. 1991. PMID: 2001254 Free PMC article.
-
Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor.Biochem J. 1991 Feb 15;274 ( Pt 1)(Pt 1):35-40. doi: 10.1042/bj2740035. Biochem J. 1991. PMID: 1900420 Free PMC article.
-
Expression systems for bovine rhodopsin: a review of the progress made in the Khorana laboratory.Biophys Rev. 2023 Jan 6;15(1):93-101. doi: 10.1007/s12551-022-01037-2. eCollection 2023 Feb. Biophys Rev. 2023. PMID: 36909956 Free PMC article. Review.
-
Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning.J Biol Chem. 2015 Sep 4;290(36):21951-61. doi: 10.1074/jbc.M115.677765. Epub 2015 Jul 20. J Biol Chem. 2015. PMID: 26195627 Free PMC article.
-
A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.Protein Sci. 2016 Jul;25(7):1308-18. doi: 10.1002/pro.2902. Epub 2016 Mar 4. Protein Sci. 2016. PMID: 26889650 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources