Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;85(2):522-9.
doi: 10.1172/JCI114468.

Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake

Affiliations

Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake

A W Thorburn et al. J Clin Invest. 1990 Feb.

Abstract

To examine whether reduced rates of oxidative (Gox) and non-oxidative (Nox) glucose metabolism in non-insulin-dependent diabetes mellitus (NIDDM) are due to reduced glucose uptake, intrinsic defects in intracellular glucose metabolism or increased fat oxidation (Fox), indirect calorimetry was performed at similar glucose uptake rates in eight nonobese NIDDM and eight comparable nondiabetic subjects. Three glucose clamp studies were performed: one in the nondiabetic and two in the NIDDM subjects. In the nondiabetic subjects, glucose uptake was increased to 7.62 +/- 0.62 mg/kg of fat-free mass (FFM) per min by increasing serum insulin to 309 pmol/liter at a glucose concentration of 5.1 mmol/liter. By raising the concentration of either serum glucose or insulin fourfold in the NIDDM subjects, glucose uptake was matched to nondiabetic subjects (8.62 +/- 0.49 and 8.59 +/- 0.51 mg/kg FFM per min, respectively, P = NS). Skeletal muscle glycogen synthase activity and plasma lactate levels were measured to characterize Nox. When glucose uptake was matched to nondiabetics by hyperglycemia or hyperinsulinemia, Gox was reduced by 26-28% in NIDDM (P less than 0.025) whereas Fox was similar. Nox was greater in NIDDM (P less than 0.01) and was accompanied by increases in circulating lactate levels. Glycogen synthase activity was reduced by 41% (P less than 0.025) when glucose uptake was matched by hyperglycemia. Glycogen synthase activity was normalized in NIDDM, however, when glucose uptake was matched by hyperinsulinemia. Therefore, a defect in Gox exists in nonobese NIDDM subjects which cannot be overcome by increasing glucose uptake or insulin. Since both glucose uptake and Fox were similar in the two subject groups these factors were not responsible for reduced Gox. Increased Nox in NIDDM is primarily into lactate. Reduced glycogen synthase activity in NIDDM is independent of glucose uptake but can be overcome by increasing the insulin concentration.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Diabetes. 1983 Jan;32(1):35-45 - PubMed
    1. Diabetes. 1988 Apr;37(4):436-40 - PubMed
    1. Diabetes. 1983 Nov;32(11):982-7 - PubMed
    1. Metabolism. 1984 Feb;33(2):111-6 - PubMed
    1. J Clin Invest. 1984 Apr;73(4):1185-90 - PubMed

Publication types