Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;277(23):4920-30.
doi: 10.1111/j.1742-4658.2010.07897.x. Epub 2010 Nov 5.

Structural and functional studies of the human phosphoribosyltransferase domain containing protein 1

Affiliations
Free article

Structural and functional studies of the human phosphoribosyltransferase domain containing protein 1

Martin Welin et al. FEBS J. 2010 Dec.
Free article

Abstract

Human hypoxanthine-guanine phosphoribosyltransferase (HPRT) (EC 2.4.2.8) catalyzes the conversion of hypoxanthine and guanine to their respective nucleoside monophosphates. Human HPRT deficiency as a result of genetic mutations is linked to both Lesch-Nyhan disease and gout. In the present study, we have characterized phosphoribosyltransferase domain containing protein 1 (PRTFDC1), a human HPRT homolog of unknown function. The PRTFDC1 structure has been determined at 1.7 Å resolution with bound GMP. The overall structure and GMP binding mode are very similar to that observed for HPRT. Using a thermal-melt assay, a nucleotide metabolome library was screened against PRTFDC1 and revealed that hypoxanthine and guanine specifically interacted with the enzyme. It was subsequently confirmed that PRTFDC1 could convert these two bases into their corresponding nucleoside monophosphate. However, the catalytic efficiency (k(cat)/K(m)) of PRTFDC1 towards hypoxanthine and guanine was only 0.26% and 0.09%, respectively, of that of HPRT. This low activity could be explained by the fact that PRTFDC1 has a Gly in the position of the proposed catalytic Asp of HPRT. In PRTFDC1, a water molecule at the position of the aspartic acid side chain position in HPRT might be responsible for the low activity observed by acting as a weak base. The data obtained in the present study indicate that PRTFDC1 does not have a direct catalytic role in the nucleotide salvage pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data