Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Nov;138(5):623-30.
doi: 10.1016/j.ajodo.2009.01.032.

Physical, mechanical, and flexural properties of 3 orthodontic wires: an in-vitro study

Affiliations
Comparative Study

Physical, mechanical, and flexural properties of 3 orthodontic wires: an in-vitro study

Shubhaker Rao Juvvadi et al. Am J Orthod Dentofacial Orthop. 2010 Nov.

Abstract

Introduction: Understanding the biologic requirements of orthodontic patients requires proper characterization studies of new archwire alloys. The aims of this study were to evaluate properties of wires made of 2 new materials and to compare their properties with those of stainless steel.

Methods: The sample consisted of 30 straight lengths of 3 types of wires: stainless steel, titanium-molybdenum alloy, and beta-titanium alloy. Eight properties were evaluated: wire dimension, edge bevel, composition, surface characteristics, frictional characteristics, ultimate tensile strength (UTS), modulus of elasticity (E), yield strength (YS), and load deflection characteristics. A toolmaker's microscope was used to measure the edge bevel, and x-ray fluorescence was used for composition analysis. Surface profilometry and scanning electron microscopy were used for surface evaluation. A universal testing machine was used to evaluate frictional characteristics, tensile strength, and 3-point bending.

Results: Stainless steel was the smoothest wire; it had the lowest friction and spring-back values and high values for stiffness, E, YS, and UTS. The titanium-molybdenum alloy was the roughest wire; it had high friction and intermediate spring-back, stiffness, and UTS values. The beta-titanium alloy was intermediate for smoothness, friction, and UTS but had the highest spring-back.

Conclusions: The beta-titanium alloy with increased UTS and YS had a low E value, suggesting that it would have greater resistance to fracture, thereby overcoming a major disadvantage of titanium-molybdenum alloy wires. The beta-titanium alloy wire would also deliver gentler forces.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources