Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;5(2):126-32.
doi: 10.1016/j.fsigen.2010.10.006. Epub 2010 Nov 5.

SAM: String-based sequence search algorithm for mitochondrial DNA database queries

Affiliations

SAM: String-based sequence search algorithm for mitochondrial DNA database queries

Alexander Röck et al. Forensic Sci Int Genet. 2011 Mar.

Abstract

The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bär W., Brinkmann B., Budowle B., Carracedo A., Gill P., Holland M., Lincoln P.J., Mayr W., Morling N., Olaisen B., Schneider P.M., Tully G., Wilson M. DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Int. J. Legal Med. 2000;113:193–196. - PubMed
    1. Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999;23:147. - PubMed
    1. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. - PubMed
    1. Tully G., Bär W., Brinkmann B., Carracedo A., Gill P., Morling N., Parson W., Schneider P. Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci. Int. 2001;124:83–91. - PubMed
    1. Wilson M.R., Allard M.W., Monson K.L., Miller K.W., Budowle B. Recommendations for consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci. Int. 2002;129:35–42. - PubMed

Publication types

Substances