Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;45(1):1-15.
doi: 10.1165/rcmb.2010-0365TR. Epub 2010 Nov 5.

Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors

Affiliations
Review

Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors

Laszlo Farkas et al. Am J Respir Cell Mol Biol. 2011 Jul.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a disabling disease of the lung parenchyma, characterized by progressive accumulation of scar tissue and myofibroblast activation after repetitive epithelial microinjury. The therapeutic options are limited, and patients usually die within a few years after diagnosis. Pulmonary hypertension (PH) in IPF has been increasingly recognized as a condition with relevance for the overall prognosis. Treatment trials are being designed, but to be effective, it is crucial to better understand the pathobiology of PH in IPF: the traditional concept, that hypoxic vasoconstriction and accumulation of scar tissue are mainly responsible for the development of PH in IPF, has been challenged. Recent studies, including our own in vivo research, suggest that the underlying pathobiology is much more complex, and includes a complicated interaction of epithelial cells, fibroblasts, and vascular cells. This interaction seems to be regulated by a large variety of angiogenesis promoters and inhibitors, as well as growth factors. Central components seem to be endothelial apoptosis and growth factor-induced remodeling of the pulmonary artery wall. The present review gives a conceptual overview about known and putative mechanisms that are involved in the development of PH in IPF. This report summarizes currently available therapeutic options, and also translates experimental research to discuss potential novel biomarkers and therapeutic strategies derived from new concepts in pathogenesis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources