Polymodal TRPC signaling: Emerging role in phenotype switching and tissue remodeling
- PMID: 21057623
- PMCID: PMC2974063
- DOI: 10.4161/cib.3.5.12131
Polymodal TRPC signaling: Emerging role in phenotype switching and tissue remodeling
Abstract
TRPC proteins have been implicated in a large array of Ca(2+) signaling processes and are considered as pore-forming subunits of unique polymodal channel sensors. The mechanisms of TRPC activation are so far incompletely understood but appear to involve a concert of signals that are generated typically downstream of receptor-mediated activation of phospholipase C. Specifically for the TRPC1/4/5 subfamily the activating scenario is ill-defined and appears enigmatic due to the observation of multiple modes of activation. TRPC4 was initially described as a store-operated cation channel and was repeatedly proposed as a pivotal element of the store-operated signaling pathways of various tissues. However, classical reconstitution of TRPC4 complexes in expression systems as well as recent knock-down strategies provided evidence against store-dependent regulation of this channel and raised considerable doubt in its proposed prominent role agonist-induced Ca(2+) signaling. Recent analysis of the function of TRPC4 in vascular endothelial cells of divergent phenotype revealed a novel aspect of TRPC signaling, extending the current concept of TRPC regulation by a phenotype-dependent switch between Ca(2+) transport and a potential intracellular scaffold function of the TRPC protein.
Keywords: Ca2+ signaling; cell-cell contacts; endothelial phenotype switching; transient receptor potential channel 4.
Figures

Similar articles
-
TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels.Cell Calcium. 2003 May-Jun;33(5-6):441-50. doi: 10.1016/s0143-4160(03)00055-1. Cell Calcium. 2003. PMID: 12765689 Review.
-
Role of Ca2+ signaling in the regulation of endothelial permeability.Vascul Pharmacol. 2002 Nov;39(4-5):173-85. doi: 10.1016/s1537-1891(03)00007-7. Vascul Pharmacol. 2002. PMID: 12747958 Review.
-
Ca2+ signaling, TRP channels, and endothelial permeability.Microcirculation. 2006 Dec;13(8):693-708. doi: 10.1080/10739680600930347. Microcirculation. 2006. PMID: 17085428 Review.
-
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca2+ Entry: Impact on Ca2+ Signaling and Cell Function.Adv Exp Med Biol. 2017;993:159-188. doi: 10.1007/978-3-319-57732-6_9. Adv Exp Med Biol. 2017. PMID: 28900914 Review.
-
Cell-cell contact formation governs Ca2+ signaling by TRPC4 in the vascular endothelium: evidence for a regulatory TRPC4-beta-catenin interaction.J Biol Chem. 2010 Feb 5;285(6):4213-4223. doi: 10.1074/jbc.M109.060301. Epub 2009 Dec 8. J Biol Chem. 2010. PMID: 19996314 Free PMC article.
Cited by
-
Transient receptor potential channels and regulation of lung endothelial permeability.Pulm Circ. 2013 Dec;3(4):802-15. doi: 10.1086/674765. Pulm Circ. 2013. PMID: 25006396 Free PMC article. Review.
-
The Molecular Heterogeneity of Store-Operated Ca2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca2+-Selective to Non-Selective Cation Currents.Int J Mol Sci. 2023 Feb 7;24(4):3259. doi: 10.3390/ijms24043259. Int J Mol Sci. 2023. PMID: 36834672 Free PMC article. Review.
-
Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters.World J Biol Chem. 2012 Jul 26;3(7):127-58. doi: 10.4331/wjbc.v3.i7.127. World J Biol Chem. 2012. PMID: 22905291 Free PMC article.
References
-
- Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW., Jr The mammalian TRPC cation channels. Biochim Biophys Acta. 2004;1742:21–36. - PubMed
-
- Pedersen SF, Owsianik G, Nilius B. TRP channels: An overview. Cell Calcium. 2005;38:233–252. - PubMed
-
- Birnbaumer L. The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol. 2009;49:395–426. - PubMed
-
- Zhu X, et al. Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996;85:661–671. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous