Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2010 Nov;90(6):625-9.
doi: 10.2340/00015555-0977.

Severe pneumonia caused by combined infection with Pneumocystis jiroveci, parainfluenza virus type 3, cytomegalovirus, and Aspergillus fumigatus in a patient with Stevens-Johnson syndrome/toxic epidermal necrolysis

Affiliations
Free article
Case Reports

Severe pneumonia caused by combined infection with Pneumocystis jiroveci, parainfluenza virus type 3, cytomegalovirus, and Aspergillus fumigatus in a patient with Stevens-Johnson syndrome/toxic epidermal necrolysis

Taehoon Lee et al. Acta Derm Venereol. 2010 Nov.
Free article

Abstract

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe adverse cutaneous reactions to drugs. We report here the first case of severe pneumonia caused by an unusual combined infection with Pneumocystis carinii (jiroveci), parainfluenza virus type 3, cytomegalovirus and Aspergillus fumigatus in a 63-year-old female patient with allopurinol-induced SJS/TEN overlap syndrome. Following treatment with high-dose systemic corticosteroids and intravenous immunoglobulin for SJS/TEN, her mucocutaneous lesions improved and she was due to be discharged. However, 15 days after cessation of corticosteroids, she developed pneumonia. Broncho-alveolar lavage revealed that the cause of infection was Pneumocystis carinii (jiroveci), parainfluenza virus type 3, cytomegalovirus and Aspergillus. These findings indicate that patients with SJS/TEN, particularly those treated with systemic corticosteroids, may be susceptible to infection with combinations of pathological agents resulting from damage to the bronchial epithelia.

PubMed Disclaimer

Publication types

MeSH terms