Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb 15;144(4):1411-7.

Studies on molecular regulation of phagocytosis and activation of the NADPH oxidase in neutrophils. IgG- and C3b-mediated ingestion and associated respiratory burst independent of phospholipid turnover and Ca2+ transients

Affiliations
  • PMID: 2105997

Studies on molecular regulation of phagocytosis and activation of the NADPH oxidase in neutrophils. IgG- and C3b-mediated ingestion and associated respiratory burst independent of phospholipid turnover and Ca2+ transients

V Della Bianca et al. J Immunol. .

Abstract

The role of messengers derived from hydrolysis of phosphoinositides and other phospholipids, of the basal level of [Ca2+]i and of the increase in [Ca2+]i in phagocytosis and respiratory burst was investigated, using normal neutrophils and neutrophils Ca2(+)-depleted by pretreatment with Quin2/AM and EGTA. 1) Phagocytosis and respiratory burst in control neutrophils challenged with yeast opsonized with IgG or C3b/bi were associated with a stimulation of the production of inositol phosphates, diacylglycerol, phosphatidic acid, arachidonic acid, and rise in [Ca2+]i. 2) In Ca2(+)-depleted neutrophils (basal [Ca2+]i 10 to 20 nM) the phagocytosis of yeast-IgG was similar to that in control neutrophils, the respiratory burst was slightly depressed (-30%), while the increase in [Ca2+]i and production of inositol phosphates, diacylglycerol, and phosphatidic and arachidonic acid did not occur. 3) In Ca2(+)-depleted neutrophils the phagocytosis of yeast-C3b/bi was slightly lower than that in control neutrophils, and the respiratory burst, related to the same number of particles ingested, was depressed by about 60%, whereas the increase in [Ca2+]i and production of inositol phosphates, diacylglycerol, phosphatidic acid, and arachidonic acid release did not occur. These findings demonstrate that transmembrane signaling pathways involving the hydrolysis of phosphoinositides by phospholipase C and D and of other phospholipids by phospholipase C and Az, and the rise in [Ca2+]i are not essential processes for triggering the ingestion of yeast particles opsonized with IgG and C3b/bi and the activation of the NADPH oxidase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources