Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;5(6):065011.
doi: 10.1088/1748-6041/5/6/065011. Epub 2010 Nov 9.

The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells

Affiliations

The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells

Zhang-Qi Feng et al. Biomed Mater. 2010 Dec.

Abstract

Nanofibrous scaffolds have been applied widely in tissue engineering to simulate the nanostructure of natural extracellular matrix (ECM) and promote cell bioactivity. The aim of this study was to design a biocompatible nanofibrous scaffold for blood outgrowth endothelial cells (BOECs) and investigate the interaction between the topography of the nanofibrous scaffold and cell growth. Poly(L-lactic acid) (PLLA) random and aligned nanofibers with a uniform diameter distribution were fabricated by electrospinning. NH(3) plasma etching was used to create a hydrophilic surface on the nanofibers to improve type-I collagen adsorption; the conditions of the NH(3) plasma etching were optimized by XPS and water contact angle analysis. Cell attachment, proliferation, viability, phenotype and morphology of BOECs cultured on type-I collagen-coated PLLA film (col-Film), random fibers (col-RFs) and aligned fibers (col-AFs) were detected over a 7 day culture period. The results showed that collagen-coated PLLA nanofibers improved cell attachment and proliferation; col-AFs induced the directional growth of cells along the aligned nanofibers and enhanced endothelialization. We suggest that col-AFs may be a potential implantable scaffold for vascular tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources