Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;13(6):748-57.

Eliminating pharmaceutical impurities: Recent advances in detection techniques

Affiliations
  • PMID: 21061235
Review

Eliminating pharmaceutical impurities: Recent advances in detection techniques

David Q Liu et al. Curr Opin Drug Discov Devel. 2010.

Abstract

The elimination of organic impurities to produce highly pure drug substances is an important goal of process chemistry. For the detection of general impurities, hyphenated techniques (eg, liquid chromatography-mass spectrometry [LC-MS]) play a critical role in rapid structural identification (qualitative detection) and in understanding the mechanisms of formation of the impurities, enabling informed decisions to control and eliminate the impurities resulting from the chemical process where possible. Concern regarding genotoxic impurities (GTIs), which must typically be controlled at low parts-per-million limits, continues to increase, and significant advances have been achieved in recent years for the selective and sensitive quantitation (quantitative detection) of such impurities. Conventional detection techniques, such as ultraviolet (UV) detection, are often inadequate for the detection of potentially minute quantities of GTIs; therefore, various advanced MS-based detection strategies, either stand-alone or in conjunction with chemical approaches, are playing an increasing role in this field. The primary aim of this review is to highlight recent advances in qualitative and quantitative detection of impurities at trace levels, with a particular focus on GTIs.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources