Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;34(3):406-17.
doi: 10.1111/j.1365-3040.2010.02251.x. Epub 2010 Dec 15.

Plasma membrane Ca²+ transporters mediate virus-induced acquired resistance to oxidative stress

Affiliations
Free article

Plasma membrane Ca²+ transporters mediate virus-induced acquired resistance to oxidative stress

Sergey Shabala et al. Plant Cell Environ. 2011 Mar.
Free article

Abstract

This paper reports the phenomenon of acquired cross-tolerance to oxidative stress in plants and investigates the activity of specific Ca²+ transport systems mediating this phenomenon. Nicotiana benthamiana plants were infected with Potato virus X (PVX) and exposed to oxidative [either ultraviolet (UV-C) or H₂O₂] stress. Plant adaptive responses were assessed by the combined application of a range of electrophysiological (non-invasive microelectrode ion flux measurements), biochemical (Ca²+- and H+-ATPase activity), imaging (fluorescence lifetime imaging measurements of changes in intracellular Ca²+ concentrations), pharmacological and cytological transmission electrone microscopy techniques. Virus-infected plants had a better ability to control UV-induced elevations in cytosolic-free Ca²+ and prevent structural and functional damage of chloroplasts. Taken together, our results suggest a high degree of crosstalk between UV and pathogen-induced oxidative stresses, and highlight the crucial role of Ca²+ efflux systems in acquired resistance to oxidative stress in plants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources