Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Mar;172(3):1297-305.
doi: 10.1128/jb.172.3.1297-1305.1990.

Structure and light-regulated expression of phycoerythrin genes in wild-type and phycobilisome assembly mutants of Synechocystis sp. strain PCC 6701

Affiliations
Comparative Study

Structure and light-regulated expression of phycoerythrin genes in wild-type and phycobilisome assembly mutants of Synechocystis sp. strain PCC 6701

L K Anderson et al. J Bacteriol. 1990 Mar.

Abstract

Phycoerythrin is a major pigmented component of the phycobilisome, a cyanobacterial light-harvesting complex. It contains bilin-type chromophores that absorb and transfer light energy to chlorophyll protein complexes of the photosynthetic membranes. In many cyanobacteria, phycoerythrin expression is regulated by light wavelength in a response known as chromatic adaptation. Green light-grown cells contain higher levels of this biliprotein than do cells grown in red light. The phycoerythrin gene set from the unicellular cyanobacterium Synechocystis sp. strain PCC 6701 was cloned and sequenced, and the 5' end of the phycoerythrin mRNA was localized. The amino acid sequences of the phycoerythrin subunits from Synechocystis strain 6701 and Fremyella diplosiphon were 90% identical. As observed in F. diplosiphon, the Synechocystis strain 6701 phycoerythrin transcript accumulated to high levels in green light-grown cells and low levels in red light-grown cells. Similar nucleotide sequences, which might control gene expression, occurred upstream of the transcription initiation sites of the phycoerythrin genes in both organisms. While the phycoerythrin structure and light-regulated transcript accumulation were similar in Synechocystis strain 6701 and F. diplosiphon, the steady-state levels of phycoerythrin subunits during growth in red light were quite different for the two organisms. This observation suggests that control of phycoerythrin levels in Synechocystis strain 6701 is complex and may involve posttranscriptional processes. We also characterized the phycoerythrin genes and mRNA levels in two phycobilisome assembly mutants, UV16-40 and UV16.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Science. 1985 Nov 1;230(4725):550-3 - PubMed
    1. J Cell Biol. 1982 Feb;92(2):261-8 - PubMed
    1. J Biol Chem. 1982 Apr 10;257(7):3429-33 - PubMed
    1. J Bacteriol. 1977 Apr;130(1):82-91 - PubMed
    1. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342-6 - PubMed

Publication types

MeSH terms

Associated data