Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;14(6):237.
doi: 10.1186/cc9238. Epub 2010 Nov 3.

Bench-to-bedside review: hypercapnic acidosis in lung injury--from 'permissive' to 'therapeutic'

Affiliations
Review

Bench-to-bedside review: hypercapnic acidosis in lung injury--from 'permissive' to 'therapeutic'

Marloes M Ijland et al. Crit Care. 2010.

Abstract

Modern ventilation strategies for patients with acute lung injury and acute respiratory distress syndrome frequently result in hypercapnic acidosis (HCA), which is regarded as an acceptable side effect ('permissive hypercapnia'). Multiple experimental studies have demonstrated advantageous effects of HCA in several lung injury models. To date, however, human trials studying the effect of carbon dioxide per se on outcome in patients with lung injury have not been performed. While significant concerns regarding HCA remain, in particular the possible unfavorable effects on bacterial killing and the inhibition of pulmonary epithelial wound repair, the potential for HCA in attenuating lung injury is promising. The underlying mechanisms by which HCA exerts its protective effects are complex, but dampening of the inflammatory response seems to play a pivotal role. After briefly summarizing the physiological effects of HCA, a critical analysis of the available evidence on the potential beneficial effects of therapeutic HCA from in vitro, ex vivo and in vivo lung injury models and from human studies will be reviewed. In addition, the potential concerns in the clinical setting will be outlined.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Modulating effect of hypercapnic acidosis on the inflammatory response. NF-κB can be activated by multiple stimuli, such as endotoxin (lipopolysaccharide), reactive oxygen species (ROS) and cytokines (IL-1β and TNF-α). Subsequently, phosphorylation of IκB (inhibitory proteins κB) occurs followed by its degradation, allowing NF-κB to be transported to the cell nucleus where it binds to specific promoter sites and activates transcription of target genes. Following activation of NF-κB, both intra- and extracellular feedback mechanism will subsequently regulate NF-κB activation, with IL-1β and TNF-α providing positive extracellular feedback. The potential mechanism by which hypercapnic acidosis (HCA) inhibits NF-κB activation appears to involve suppression of the degradation of IκB-α. Subsequently, this will result in suppressed production of IL-1β, IL-6, IL-8 and TNF-α. Suppression of intercellular adhesion molecule (ICAM)-1 and IL-8 will subsequently lead to inhibition of neutrophil adherence. HCA may also offer protection against ROS-mediated lung injury by inhibiting xanthine oxidase (XO).
Figure 2
Figure 2
Effect of hypercapnic acidosis on lung tissue cytokines in ventilated mice. Effect of 2 hours of normo- and hypercapnic mechanical ventilation on ventilation-induced lung tissue cytokine release using identical ventilator settings. *P <0.05 versus control; +P <0.05, 0.06% CO2 versus 2% CO2 versus 4% CO2. KC, keratinocyte-derived chemokine. This figure is reproduced with permission of the publisher. (Halbertsma FJ, Vaneker M, Pickkers P, et al. Hypercapnic acidosis attenuates the pulmonary innate immune response in ventilated healthy mice. Crit Care Med 2008, 36:2403-2406.).

Similar articles

Cited by

References

    1. Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, Scales DC, Stather DR, Li A, Jones A, Gattas DJ, Hallett D, Tomlinson G, Stewart TE, Ferguson ND. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am J Respir Crit Care Med. 2009;179:220–227. doi: 10.1164/rccm.200805-722OC. - DOI - PubMed
    1. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–1578. doi: 10.1097/00003246-199422100-00011. - DOI - PubMed
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602. - DOI - PubMed
    1. Thorens JB, Jolliet P, Ritz M, Chevrolet JC. Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. Intensive Care Med. 1996;22:182–191. doi: 10.1007/BF01712235. - DOI - PubMed

LinkOut - more resources