Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;49(1):396-9.
doi: 10.1128/JCM.01398-10. Epub 2010 Nov 10.

Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009)

Affiliations

Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009)

Michael A Pfaller et al. J Clin Microbiol. 2011 Jan.

Abstract

Antifungal testing results from the SENTRY Antimicrobial Surveillance Program (2008 to 2009) were analyzed for regional variations of invasive Candida species infections. Among 2,085 cases from the Asian-Pacific (APAC) (51 cases), Latin American (LAM) (348 cases), European (EU) (750 cases), and North American (NAM) (936 cases) regions, Candida albicans predominated (48.4%), followed by C. glabrata (18.0%), C. parapsilosis (17.2%), C. tropicalis (10.5%), and C. krusei (1.9%). Resistance to echinocandins (anidulafungin [2.4%] and micafungin [1.9%]) and azoles (3.5 to 5.6%) was most prevalent among C. glabrata isolates, as determined using recently established CLSI breakpoint criteria. C. glabrata isolates were more common in NAM (23.5%), and C. albicans isolates were more common in APAC (56.9%), with C. parapsilosis (25.6%) and C. tropicalis (17.0%) being more prominent in LAM. Emerging resistance patterns among C. glabrata cases in NAM require focused surveillance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alexander, B. D., W. A. Schell, J. L. Miller, G. D. Long, and J. R. Perfect. 2005. Candida glabrata fungemia in transplant patients receiving voriconazole after fluconazole. Transplantation 80:868-871. - PubMed
    1. Chapeland-Leclerc, F., C. Hennequin, N. Papon, T. Noel, A. Girard, G. Socie, P. Ribaud, and C. Lacroix. 2010. Acquisition of flucytosine, azole, and caspofungin resistance in Candida glabrata bloodstream isolates serially obtained from a hematopoietic stem cell transplant recipient. Antimicrob. Agents Chemother. 54:1360-1362. - PMC - PubMed
    1. Cleary, J. D., G. Garcia-Effron, S. W. Chapman, and D. S. Perlin. 2008. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob. Agents Chemother. 52:2263-2265. - PMC - PubMed
    1. CLSI. 2008. M27-A3. Reference method for broth dilution antifungal susceptibility testing of yeasts, 3rd ed. CLSI, Wayne, PA.
    1. CLSI. 2008. M27-S3. Reference method for broth dilution antifungal susceptibility testing of yeasts: 3rd informational supplement. CLSI, Wayne, PA.

Publication types