Interconnecting gold islands with DNA origami nanotubes
- PMID: 21070012
- PMCID: PMC3399060
- DOI: 10.1021/nl1033073
Interconnecting gold islands with DNA origami nanotubes
Abstract
Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to integrate the bottom-up self-assembly of DNA origami with the top-down lithographic methods used to generate surface patterning. In this report we demonstrate that fixed length DNA origami nanotubes, modified with multiple thiol groups near both ends, can be used to connect surface patterned gold islands (tens of nanometers in diameter) fabricated by electron beam lithography (EBL). Atomic force microscopic imaging verified that the DNA origami nanotubes can be efficiently aligned between gold islands with various interisland distances and relative locations. This development represents progress toward the goal of bridging bottom-up and top-down assembly approaches.
Figures





Similar articles
-
Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces.Nanoscale. 2014;6(3):1790-6. doi: 10.1039/c3nr04627c. Nanoscale. 2014. PMID: 24352681
-
Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.J Am Chem Soc. 2016 Jun 22;138(24):7733-40. doi: 10.1021/jacs.6b03966. Epub 2016 Jun 9. J Am Chem Soc. 2016. PMID: 27224641
-
Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami.Nat Nanotechnol. 2010 Feb;5(2):121-6. doi: 10.1038/nnano.2009.450. Epub 2009 Dec 20. Nat Nanotechnol. 2010. PMID: 20023644
-
Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.Molecules. 2022 Jun 30;27(13):4224. doi: 10.3390/molecules27134224. Molecules. 2022. PMID: 35807467 Free PMC article. Review.
-
Recent progress in DNA origami technology.Curr Protoc Nucleic Acid Chem. 2011 Jun;Chapter 12:Unit12.8. doi: 10.1002/0471142700.nc1208s45. Curr Protoc Nucleic Acid Chem. 2011. PMID: 21638269 Review.
Cited by
-
Structural DNA nanotechnology: state of the art and future perspective.J Am Chem Soc. 2014 Aug 13;136(32):11198-211. doi: 10.1021/ja505101a. Epub 2014 Jul 28. J Am Chem Soc. 2014. PMID: 25029570 Free PMC article. Review.
-
Structural DNA nanotechnology: from design to applications.Int J Mol Sci. 2012;13(6):7149-7162. doi: 10.3390/ijms13067149. Epub 2012 Jun 11. Int J Mol Sci. 2012. PMID: 22837684 Free PMC article. Review.
-
Bottom-Up Fabrication of DNA-Templated Electronic Nanomaterials and Their Characterization.Nanomaterials (Basel). 2021 Jun 23;11(7):1655. doi: 10.3390/nano11071655. Nanomaterials (Basel). 2021. PMID: 34201888 Free PMC article. Review.
-
DNA Origami Nanophotonics and Plasmonics at Interfaces.Langmuir. 2018 Dec 11;34(49):14911-14920. doi: 10.1021/acs.langmuir.8b01843. Epub 2018 Aug 30. Langmuir. 2018. PMID: 30122051 Free PMC article.
-
Constructing Large 2D Lattices Out of DNA-Tiles.Molecules. 2021 Mar 10;26(6):1502. doi: 10.3390/molecules26061502. Molecules. 2021. PMID: 33801952 Free PMC article. Review.
References
-
- Seeman NC. Nature. 2003;421:427–431. - PubMed
-
- Rothemund PWK. Nature. 2006;440(7082):297–302. - PubMed
-
- Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J. Nature. 2009;459:73–76. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources