Bipolar cell pathways for color vision in non-primate dichromats
- PMID: 21070688
- DOI: 10.1017/S0952523810000271
Bipolar cell pathways for color vision in non-primate dichromats
Abstract
Color vision in mammals is based on the expression of at least two cone opsins that are sensitive to different wavelengths of light. Furthermore, retinal pathways conveying color-opponent signals are required for color discrimination. Most of the primates are trichromats, and "color-coded channels" of their retinas are unveiled to a large extent. In contrast, knowledge of cone-selective pathways in nonprimate dichromats is only slowly emerging, although retinas of dichromats like mice or rats are extensively studied as model systems for retinal information processing. Here, we review recent progress of research on color-coded pathways in nonprimate dichromats to identify differences or similarities between di- and trichromatic mammals. In addition, we applied immunohistochemical methods and confocal microscopy to retinas of different species and present data on their neuronal properties, which are expected to contribute to color vision. Basic neuronal features such as the "blue cone bipolar cell" exist in every species investigated so far. Moreover, there is increasing evidence for chromatic OFF channels in dichromats and retinal ganglion cells that relay color-opponent signals to the brain. In conclusion, di- and trichromats share similar retinal pathways for color transmission and processing.
Similar articles
-
Chromatic bipolar cell pathways in the mouse retina.J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011. J Neurosci. 2011. PMID: 21525291 Free PMC article.
-
Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.Vis Neurosci. 2005 Nov-Dec;22(6):893-903. doi: 10.1017/S0952523805226172. Vis Neurosci. 2005. PMID: 16469196
-
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12. J Neurosci. 2019. PMID: 31405926 Free PMC article.
-
Processing of S-cone signals in the inner plexiform layer of the mammalian retina.Vis Neurosci. 2014 Mar;31(2):153-63. doi: 10.1017/S0952523813000308. Epub 2013 Sep 9. Vis Neurosci. 2014. PMID: 24016424 Free PMC article. Review.
-
Primate color vision: a comparative perspective.Vis Neurosci. 2008 Sep-Dec;25(5-6):619-33. doi: 10.1017/S0952523808080760. Vis Neurosci. 2008. PMID: 18983718 Review.
Cited by
-
Lateral interactions in the outer retina.Prog Retin Eye Res. 2012 Sep;31(5):407-41. doi: 10.1016/j.preteyeres.2012.04.003. Epub 2012 May 3. Prog Retin Eye Res. 2012. PMID: 22580106 Free PMC article. Review.
-
Receptor targets of amacrine cells.Vis Neurosci. 2012 Jan;29(1):11-29. doi: 10.1017/S0952523812000028. Vis Neurosci. 2012. PMID: 22310370 Free PMC article. Review.
-
Short-wavelength cone-opponent retinal ganglion cells in mammals.Vis Neurosci. 2014 Mar;31(2):165-75. doi: 10.1017/S095252381300031X. Vis Neurosci. 2014. PMID: 24759445 Free PMC article. Review.
-
Neural circuits in the mouse retina support color vision in the upper visual field.Nat Commun. 2020 Jul 13;11(1):3481. doi: 10.1038/s41467-020-17113-8. Nat Commun. 2020. PMID: 32661226 Free PMC article.
-
Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze.Sci Rep. 2021 Jan 13;11(1):1255. doi: 10.1038/s41598-021-80988-0. Sci Rep. 2021. PMID: 33441984 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources