Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice
- PMID: 21071688
- PMCID: PMC3024460
- DOI: 10.1161/ATVBAHA.110.216226
Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice
Abstract
Objective: The goal of this study was to determine the influence of apolipoprotein A-I (apoA-I) tertiary structure domain properties on the antiatherogenic properties of the protein. Two chimeric hybrids with the N-terminal domains swapped (human-mouse apoA-I and mouse-human apoA-I) were expressed in apoA-I-null mice with adeno-associated virus (AAV) and used to study macrophage reverse cholesterol transport (RCT) in vivo.
Methods and results: The different apoA-I variants were expressed in apoA-I-null mice that were injected with [H(3)]cholesterol-labeled J774 mouse macrophages to measure RCT. Significantly more cholesterol was removed from the macrophages and deposited in the feces via the RCT pathway in mice expressing mouse-H apoA-I compared with all other groups. Analysis of the individual components of the RCT pathway demonstrated that mouse-H apoA-I promoted ATP-binding cassette transporter A1-mediated cholesterol efflux more efficiently than all other variants, as well as increasing the rate of cholesterol uptake into liver cells.
Conclusions: The structural domain properties of apoA-I affect the ability of the protein to mediate macrophage RCT. Replacement of the N-terminal helix bundle domain in the human apoA-I with the mouse apoA-I counterpart causes a gain of function with respect to macrophage RCT, suggesting that engineering some destabilization into the N-terminal helix bundle domain or increasing the hydrophobicity of the C-terminal domain of human apoA-I would enhance the antiatherogenic properties of the protein.
Figures





References
-
- Davidson WS, Thompson TB. The structure of apolipoprotein A-I in high density lipoproteins. J Biol Chem. 2007;282:22249–22253. - PubMed
-
- Curtiss LK, Valenta DT, Hime NJ, Rye KA. What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol. 2006;26:12–19. - PubMed
-
- Yancey PG, Bortnick AE, Kellner-Weibel G, De La Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol. 2003;23:712–719. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical