Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;142(3):449-57.
doi: 10.1002/jcp.1041420303.

Adenine nucleotides modulate phosphatidylcholine metabolism in aortic endothelial cells

Affiliations

Adenine nucleotides modulate phosphatidylcholine metabolism in aortic endothelial cells

S Pirotton et al. J Cell Physiol. 1990 Mar.

Abstract

ATP and ADP, in concentrations ranging from 1-100 microM, increased the release of [3H]choline and [3H]phosphorylcholine (P-choline) from bovine aortic endothelial cells (BAEC) prelabelled with [3H]choline. This action was detectable within 5 minutes and was maintained for at least 40 minutes. ATP and ADP were equiactive, and their action was mimicked by their phosphorothioate analogs (ATP gamma S and ADP beta S) and adenosine 5'-(beta, gamma imido) triphosphate (APPNP), but not by AMP, adenosine, and adenosine 5'-(alpha, beta methylene)triphosphate (APCPP): these results are consistent with the involvement of P2Y receptors. ATP also induced an intracellular accumulation of [3H]choline: the intracellular level of [3H]choline was increased 30 seconds after ATP addition and remained elevated for a least 20 minutes. The action of ATP on the release of choline metabolites was reproduced by bradykinin (1 microM), the tumor promoter phorbol 12-myristate 13-acetate (PMA, 50 nM), and the calcium ionophore A23187 (0.5 microM). Down-regulation of protein kinase C, following a 24-hour exposure of endothelial cells to PMA, abolished the effects of PMA and ATP on the release of choline and P-choline, whereas the response to A23187 was maintained. These results suggest that in aortic endothelial cells, ATP produces a sustained activation of a phospholipase D hydrolyzing phosphatidylcholine. The resulting accumulation of phosphatidic acid might have an important role in the modulation of endothelial cell function by adenine nucleotides. Stimulation of phospholipase D appears to involve protein kinase C, activated following the release of diacylglycerol from phosphatidylinositol bisphosphate by a phospholipase C coupled to the P2Y receptors (Pirotton et al., 1987a).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources