Mechanisms of nephronophthisis and related ciliopathies
- PMID: 21071979
- PMCID: PMC2992643
- DOI: 10.1159/000320888
Mechanisms of nephronophthisis and related ciliopathies
Abstract
An emerging group of human genetic diseases termed 'ciliopathies' are caused by dysfunction of two functionally and physically associated organelles, the centrosome and cilium. These organelles are central to perception of the physical environment through detection of a diverse variety of extracellular signals such as growth factors, chemicals, light and fluid flow. Many of the described ciliopathies display multi-organ involvement, with renal and retina being the most commonly affected. Nephronophthisis is a recessive disorder of the kidney that is the leading cause of end-stage renal failure in children. Through positional cloning, many of the causative mutations have been mapped to genes involved in centrosome and cilia function. In this review, we discuss the identified causative mutations that give rise to nephronophthisis and how these are related to the disease etiology in both the kidney and other organs.
Copyright © 2010 S. Karger AG, Basel.
References
-
- Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Marker T, Voesenek K, Kartono A, et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet. 2007;39:882–888. - PubMed
-
- Attanasio M, Uhlenhaut NH, Sousa VH, O'Toole JF, Otto E, Anlag K, Klugmann C, Treier AC, Helou J, Sayer JA, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet. 2007;39:1018–1024. - PubMed
-
- Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82:959–970. - PMC - PubMed
-
- Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006;15:1847–1857. - PMC - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
