Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;115(1-2):31-8.

The aging brain, neuroinflammatory signaling and sleep-wake regulation

Affiliations
  • PMID: 21072987
Review

The aging brain, neuroinflammatory signaling and sleep-wake regulation

Giuseppe Bertini et al. Ital J Anat Embryol. 2010.

Abstract

Tissues and organs change over time, regulated by intrinsic (genetic) determinants and environmental (and microenvironmental) adaptation. Brain changes during lifetime are especially critical, as the brain is the effector of cognition and the vast majority of neurons live throughout the life of the individual. In addition, brain aging mechanisms are especially critical for disease vulnerability, given the aging-related prevalence of pathologies that include neurodegenerative diseases. In this context, the present contribution concisely highlights data yielded by recent trends of research on the normal aging brain, and specifically: the occurrence of synaptic changes (rather than neuronal loss) and the altered regulation of adult neurogenesis (which represents a novel exciting field of knowledge); the development of a low-grade chronic inflammatory state which primes glial cells and may lead to changes in intercellular crosstalk, thus playing a potential role in the brain susceptibility to neurodegeneration; changes occurring in state-dependent behavior, sleep and wake, which are products of global brain functioning and underlie consciousness and cognitive performance; changes in the biological clock, the hypothalamic suprachiasmatic nucleus, which regulates sleep-wake alternation and other endogenous rhythms. Altogether, the present synopsis of recent studies at the molecular, cellular, and functional levels emphasizes the idea that the normal aging brain should be viewed as an example of adaptation and plasticity rather than as an obligatory decline.

PubMed Disclaimer

LinkOut - more resources