Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Jan;77(1):84-8.
doi: 10.1016/j.ejpb.2010.11.002. Epub 2010 Nov 11.

Brain targeting with surface-modified poly(D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration

Affiliations
Comparative Study

Brain targeting with surface-modified poly(D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration

Kohei Tahara et al. Eur J Pharm Biopharm. 2011 Jan.

Abstract

In this study, we investigated surface-modified nanoparticles (NP) formulated using a biodegradable polymer, poly(D,L-lactide-co-glycolide) (PLGA), for targeting central nervous system (CNS) diseases. Polysorbate 80 (P80), poloxamer 188 (P188), and chitosan (CS) were used to modify the surfaces of PLGA NP to improve the brain delivery of NP. Surface-modified PLGA NP were formulated using an emulsion solvent diffusion method. 6-Coumarin was used as a fluorescent label for NP. The different formulations of 6-coumarin-loaded PLGA NP were injected into rats via carotid arteries. NP remaining in the brain were evaluated quantitatively, and brain slices were observed using confocal laser scanning microscopy (CLSM). Carotid artery administration was more effective for delivering NP into the brain compared to intravenous administration. After administration, NP concentrations in the brain were increased by NP surface modification, especially CS- and P80-PLGA NP. CLSM observations indicated that P80-PLGA NP could cross the blood-brain barrier and thus serve as a drug delivery system for the CNS. These results indicate that surface-modified PLGA NP have a high potential for use in CNS delivery systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources