Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract
- PMID: 21075881
- PMCID: PMC3019714
- DOI: 10.1128/AEM.02006-10
Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract
Abstract
Lactobacilli are naturally found in the gastrointestinal tract of chickens, and there is interest in utilizing autochthonous strains for the delivery of therapeutic proteins. Previously we identified three chicken-derived Lactobacillus strains, Lactobacillus agilis La3, Lactobacillus vaginalis Lv5, and Lactobacillus crispatus Lc9, which persist in the gastrointestinal tract of chickens fed either a commercial or high-protein diet. In the current study, we investigated the ability to electrotransform these strains, determined plasmid vector stability, and compared reporter gene expression directed by several different promoters. The La3 and Lv5 strains were reproducibly transformed with efficiencies of 10(8) and 10(6) transformants per microgram of plasmid DNA, respectively. The third strain tested, L. crispatus Lc9, was recalcitrant to all transformation protocols examined. The plasmid vectors pTRK563 and pTRKH2 were maintained over 100 generations in La3 and Lv5, respectively. The ability of La3 and Lv5 to express the heterologous reporter gene gfp was analyzed using heterologous and homologous promoters. Transformants of both La3 and Lv5 containing the La3 ldhL promoter were the most fluorescent. To our knowledge, this is the first report of successful transformation and heterologous protein expression in L. agilis and L. vaginalis. The ability of these strains to express heterologous proteins in vitro indicates their potential utility as in vivo delivery vectors for therapeutic peptides to the chicken gastrointestinal tract.
Figures



Similar articles
-
Stable Recombinant-Gene Expression from a Ligilactobacillus Live Bacterial Vector via Chromosomal Integration.Appl Environ Microbiol. 2021 May 11;87(11):e00392-21. doi: 10.1128/AEM.00392-21. Print 2021 May 11. Appl Environ Microbiol. 2021. PMID: 33741626 Free PMC article.
-
Lactobacillus strain ecology and persistence within broiler chickens fed different diets: identification of persistent strains.Appl Environ Microbiol. 2010 Oct;76(19):6494-503. doi: 10.1128/AEM.01137-10. Epub 2010 Aug 6. Appl Environ Microbiol. 2010. PMID: 20693442 Free PMC article.
-
Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine.Poult Sci. 2004 Jan;83(1):45-8. doi: 10.1093/ps/83.1.45. Poult Sci. 2004. PMID: 14761083
-
Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines.BMC Biotechnol. 2006 Jan 5;6:2. doi: 10.1186/1472-6750-6-2. BMC Biotechnol. 2006. PMID: 16396687 Free PMC article.
-
Genetics of lactobacilli: plasmids and gene expression.Antonie Van Leeuwenhoek. 1993-1994;64(2):85-107. doi: 10.1007/BF00873020. Antonie Van Leeuwenhoek. 1993. PMID: 8092860 Review.
Cited by
-
Stable Recombinant-Gene Expression from a Ligilactobacillus Live Bacterial Vector via Chromosomal Integration.Appl Environ Microbiol. 2021 May 11;87(11):e00392-21. doi: 10.1128/AEM.00392-21. Print 2021 May 11. Appl Environ Microbiol. 2021. PMID: 33741626 Free PMC article.
-
The impact of motility on the localization of Lactobacillus agilis in the murine gastrointestinal tract.BMC Microbiol. 2018 Jul 11;18(1):68. doi: 10.1186/s12866-018-1219-3. BMC Microbiol. 2018. PMID: 29996774 Free PMC article.
-
Co-expression of endoglucanase and cellobiohydrolase from yak rumen in lactic acid bacteria and its preliminary application in whole-plant corn silage fermentation.Front Microbiol. 2024 Sep 17;15:1442797. doi: 10.3389/fmicb.2024.1442797. eCollection 2024. Front Microbiol. 2024. PMID: 39355421 Free PMC article.
-
Cloning and functional expression of a food-grade circular bacteriocin, plantacyclin B21AG, in probiotic Lactobacillus plantarum WCFS1.PLoS One. 2020 Aug 12;15(8):e0232806. doi: 10.1371/journal.pone.0232806. eCollection 2020. PLoS One. 2020. PMID: 32785265 Free PMC article.
-
Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers.Int J Mol Sci. 2021 Dec 20;22(24):13631. doi: 10.3390/ijms222413631. Int J Mol Sci. 2021. PMID: 34948426 Free PMC article.
References
-
- Ahrne, S., G. Molin, and L. Axelsson. 1992. Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr. Microbiol. 24:199-205.
-
- Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, N. Souther, A. Dobson, T. Duong, M. Callanan, S. Lick, A. Hamrick, R. Cano, and T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. U. S. A. 102:3906-3912. - PMC - PubMed
-
- Aukrust, T. W., M. B. Brurberg, and I. F. Nes. 1995. Transformation of Lactobacillus by electroporation. Methods Mol. Biol. 47:201-208. - PubMed
-
- Beasley, S. S., T. M. Takala, J. Reunanen, J. Apajalahti, and P. E. Saris. 2004. Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine. Poult. Sci. 83:45-48. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials