Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Controlled Clinical Trial
. 2010 Nov;20(6):428-35.
doi: 10.1097/JSM.0b013e3181fb539f.

Comparative biomechanical effectiveness of over-the-counter devices for individuals with a flexible flatfoot secondary to forefoot varus

Affiliations
Controlled Clinical Trial

Comparative biomechanical effectiveness of over-the-counter devices for individuals with a flexible flatfoot secondary to forefoot varus

Wendy J Hurd et al. Clin J Sport Med. 2010 Nov.

Abstract

Objectives: Evaluate effects of a new off-the-shelf insert on frontal plane foot biomechanics and compare effectiveness of the new and an existing off-the-shelf insert and a motion-control shoe in neutralizing frontal plane foot biomechanics.

Design: Descriptive.

Setting: Biomechanics laboratory.

Participants: Fifteen uninjured subjects with a flexible flatfoot secondary to forefoot varus.

Assessment of risk factors: Three-dimensional kinematic and kinetic data were collected as subjects walked and jogged at their self-selected speed while wearing a motion-control running shoe, the shoe with a new off-the-shelf insert, and the shoe with an existing off-the-shelf insert.

Main outcome measures: Frontal plane kinematics and rearfoot kinetics were evaluated during stance. Statistical analysis was performed using a repeated measures analysis of variance and Student-Newman-Keuls post hoc tests (α ≤ 0.05).

Results: The new insert and motion-control shoe placed the forefoot in a less-everted position than the existing off-the-shelf insert during walking. There were no differences in forefoot kinematics during jogging, nor were there differences in rearfoot motion during walking or jogging. The rearfoot eversion moment was significantly lower with the new off-the-shelf insert compared with the motion-control shoe and the existing insert during walking and jogging.

Conclusions: A new off-the-shelf device is available that promotes more neutral frontal plane biomechanics, thus providing a theoretical rationale for using this device for injury prevention and treatment. The comparative biomechanical effectiveness of a motion-control shoe and the orthotic inserts may assist health care professionals in selecting a device to correct the flatfoot structure.

PubMed Disclaimer

Publication types

LinkOut - more resources