Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;20(1):41-50.
doi: 10.1111/j.1365-2362.1990.tb01789.x.

The effect of amino acid infusion on leg protein turnover assessed by L-[15N]phenylalanine and L-[1-13C]leucine exchange

Affiliations

The effect of amino acid infusion on leg protein turnover assessed by L-[15N]phenylalanine and L-[1-13C]leucine exchange

W M Bennet et al. Eur J Clin Invest. 1990 Feb.

Erratum in

  • Eur J Clin Invest 1990 Aug;20(4):479

Abstract

A stable isotope technique depending on the use of [15N]phenylalanine and [1-13C]leucine to assess exchange was utilized to measure the components of protein turnover of the human leg and the effects of amino acid infusion. Eight healthy subjects (28.5 +/- 2.5 years) were studied when post-absorptive in the basal state and again during infusion of a mixed amino acid solution (55 g l-1, 1.52 ml kg-1 h-1). During the basal period leucine oxidation by the leg was 4.4 +/- 2.0 nmol 100 g-1 min-1 and this increased threefold during amino acid infusion (13.6 +/- 3.1 nmol 100 g-1 min-1, mean +/- SEM, P = 0.003). Amino acid infusion abolished the net negative balance between incorporation of leucine into, and release from, protein (basal, -31.8 +/- 5.8; during infusion, +3.1 +/- 7.1 nmol 100 g-1 P = 0.001). Phenylalanine exchange showed a similar pattern (basal, -13.7 +/- 1.8; during infusion, -0.8 +/- 3.0 nmol 100 g-1 min-1, P = 0.003). Basal entry of leucine into leg protein (i.e. protein synthesis) was 70.0 +/- 10.8 nmol 100 g-1 min-1 and this increased during amino acid infusion to 87.3 +/- 14.1 nmol 100 g-1 min-1 (P = 0.11). Phenylalanine entry to protein also increased with amino acid infusion (29.1 +/- 4.5 vs. 38.3 +/- 5.8 nmol 100 g-1 min-1, P = 0.09). Release from protein of leucine (101.8 +/- 9.1 vs. 84.2 +/- 9.1 nmol 100 g-1 min-1, P = 0.21) and of phenylalanine (42.8 +/- 4.2 vs. 39.1 +/- 4.2 nmol 100 g-1 min-1, P = 0.50) was unchanged by amino acid infusion. The results suggest that, in the post-absorptive state in man, infusion of mixed amino acids, without additional energy substrates; reverses negative amino acid balance by a mechanism which includes stimulation of muscle protein synthesis but which does not alter protein breakdown. Interpretation of the results obtained concurrently on whole-body protein turnover suggests that the increase in muscle protein synthesis contributes substantially to the whole-body increase, but the fall in whole-body breakdown with exogenous amino acids is independent of changes in muscle.

PubMed Disclaimer

Publication types

LinkOut - more resources