The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell-cell signalling
- PMID: 21084342
- PMCID: PMC3104346
- DOI: 10.1098/rsif.2010.0488
The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell-cell signalling
Abstract
Lateral inhibition provides the basis for a self-organizing patterning system in which distinct cell states emerge from an otherwise uniform field of cells. The development of the microchaete bristle pattern on the notum of the fruitfly, Drosophila melanogaster, has long served as a popular model of this process. We recently showed that this bristle pattern depends upon a population of dynamic, basal actin-based filopodia, which span multiple cell diameters. These protrusions establish transient signalling contacts between non-neighbouring cells, generating a type of structured noise that helps to yield a well-ordered and spaced pattern of bristles. Here, we develop a general model of protrusion-based patterning to analyse the role of noise in this process. Using a simple asynchronous cellular automata rule-based model we show that this type of structured noise drives the gradual refinement of lateral inhibition-mediated patterning, as the system moves towards a stable configuration in which cells expressing the inhibitory signal are near-optimally packed. By analysing the effects of introducing thresholds required for signal detection in this model of lateral inhibition, our study shows how filopodia-mediated cell-cell communication can generate complex patterns of spots and stripes, which, in the presence of signalling noise, align themselves across a patterning field. Thus, intermittent protrusion-based signalling has the potential to yield robust self-organizing tissue-wide patterns without the need to invoke diffusion-mediated signalling.
© 2010 The Royal Society
Figures






Similar articles
-
Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition.Dev Cell. 2010 Jul 20;19(1):78-89. doi: 10.1016/j.devcel.2010.06.006. Dev Cell. 2010. PMID: 20643352
-
A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling.J R Soc Interface. 2016 Nov;13(124):20160484. doi: 10.1098/rsif.2016.0484. J R Soc Interface. 2016. PMID: 27807273 Free PMC article.
-
Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact.Math Biosci. 2016 Mar;273:1-15. doi: 10.1016/j.mbs.2015.12.008. Epub 2015 Dec 31. Math Biosci. 2016. PMID: 26748293
-
Selector and signalling molecules cooperate in organ patterning.Nat Cell Biol. 2002 Mar;4(3):E48-51. doi: 10.1038/ncb0302-e48. Nat Cell Biol. 2002. PMID: 11875444 Review.
-
Cytonemes as specialized signaling filopodia.Development. 2014 Feb;141(4):729-36. doi: 10.1242/dev.086223. Development. 2014. PMID: 24496611 Free PMC article. Review.
Cited by
-
Comparing individual-based approaches to modelling the self-organization of multicellular tissues.PLoS Comput Biol. 2017 Feb 13;13(2):e1005387. doi: 10.1371/journal.pcbi.1005387. eCollection 2017 Feb. PLoS Comput Biol. 2017. PMID: 28192427 Free PMC article.
-
Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning.Development. 2016 Jul 1;143(13):2305-10. doi: 10.1242/dev.134213. Epub 2016 May 25. Development. 2016. PMID: 27226324 Free PMC article.
-
A role for actomyosin contractility in Notch signaling.BMC Biol. 2019 Feb 11;17(1):12. doi: 10.1186/s12915-019-0625-9. BMC Biol. 2019. PMID: 30744634 Free PMC article.
-
Forced into shape: Mechanical forces in Drosophila development and homeostasis.Semin Cell Dev Biol. 2021 Dec;120:160-170. doi: 10.1016/j.semcdb.2021.05.026. Epub 2021 Jun 4. Semin Cell Dev Biol. 2021. PMID: 34092509 Free PMC article. Review.
-
β3 integrin-EGF receptor cross-talk activates p190RhoGAP in mouse mammary gland epithelial cells.Mol Biol Cell. 2011 Nov;22(22):4288-301. doi: 10.1091/mbc.E10-08-0700. Epub 2011 Sep 21. Mol Biol Cell. 2011. PMID: 21937717 Free PMC article.
References
-
- Classen A. K., Anderson K. I., Marois E., Eaton S. 2005. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–81710.1016/j.devcel.2005.10.016 (doi:10.1016/j.devcel.2005.10.016) - DOI - DOI - PubMed
-
- Cohen M., Georgiou M., Stevenson N. L., Miodownik M., Baum B. 2010. Dynamic filopodia drive pattern refinement via intermittent N-Dl signalling. Dev. Cell 19, 78–8910.1016/j.devcel.2010.06.006 (doi:10.1016/j.devcel.2010.06.006) - DOI - DOI - PubMed
-
- Maini P. K., Baker R. E., Chuong C.-M. 2006. Developmental biology. The Turing model comes of molecular age. Science 314, 1397–139810.1126/science.1136396 (doi:10.1126/science.1136396) - DOI - DOI - PMC - PubMed
-
- Webb S. D., Owen M. R. 2004. Oscillations and patterns in spatially discrete models for developmental ligand-receptor interactions. J. Math. Biol. 48, 444–47610.1007/s00285-003-0247-1 (doi:10.1007/s00285-003-0247-1) - DOI - DOI - PubMed
-
- Amoyel M., Cheng Y. C., Jiang Y.-J., Wilkinson D. G. 2005. Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132, 775–78510.1242/dev.01616 (doi:10.1242/dev.01616) - DOI - DOI - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases