Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;37(10):5228-37.
doi: 10.1118/1.3483782.

Monte Carlo simulation of the effect of miniphantom on in-air output ratio

Affiliations

Monte Carlo simulation of the effect of miniphantom on in-air output ratio

Jun Li et al. Med Phys. 2010 Oct.

Abstract

Purpose: The aim of the study was to quantify the effect of miniphantoms on in-air output ratio measurements, i.e., to determine correction factors for in-air output ratio.

Methods: Monte Carlo (MC) simulations were performed to simulate in-air output ratio measurements by using miniphantoms made of various materials (PMMA, graphite, copper, brass, and lead) and with different longitudinal thicknesses or depths (2-30 g/cm2) in photon beams of 6 and 15 MV, respectively, and with collimator settings ranging from 3 x 3 to 40 x 40 cm2. EGSnrc and BEAMnrc (2007) software packages were used. Photon energy spectra corresponding to the collimator settings were obtained from BEAMnrc code simulations on a linear accelerator and were used to quantify the components of in-air output ratio correction factors, i.e., attenuation, mass energy absorption, and phantom scatter correction factors. In-air output ratio correction factors as functions of miniphantom material, miniphantom longitudinal thickness, and collimator setting were calculated and compared to a previous experimental study.

Results: The in-air output ratio correction factors increase with collimator opening and miniphantom longitudinal thickness for all the materials and for both energies. At small longitudinal thicknesses, the in-air output ratio correction factors for PMMA and graphite are close to 1. The maximum magnitudes of the in-air output ratio correction factors occur at the largest collimator setting (40 x 40 cm2) and the largest miniphantom longitudinal thickness (30 g/cm2): 1.008 +/- 0.001 for 6 MV and 1.012 +/- 0.001 for 15 MV, respectively. The MC simulations of the in-air output ratio correction factor confirm the previous experimental study.

Conclusions: The study has verified that a correction factor for in-air output ratio can be obtained as a product of attenuation correction factor, mass energy absorption correction factor, and phantom scatter correction factor. The correction factors obtained in the present study can be used in studies involving in-air output ratio measurements using miniphantoms.

PubMed Disclaimer

MeSH terms