Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 28;4(12):7437-50.
doi: 10.1021/nn102618n. Epub 2010 Nov 23.

Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels

Affiliations

Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels

Zheng-Ming Wang et al. ACS Nano. .

Abstract

This paper describes the synthesis and characterization of single-layer graphene oxide-periodic mesoporous silica sandwich nanocomposites. Through a comprehensive exploration of the synthesis conditions, it has proven possible to create the first example of a graphene oxide-periodic mesoporous silica nanocomposite in which hexagonal symmetry PMS film grows on both sides of the graphene oxide sheets with the mesoporous channels vertically aligned with respect to the graphene oxide surface. The formation of this novel architecture is found to be very sensitive to pH, the ratio of surfactant template to graphene oxide, the amount of silica precursor, and the temperature of the synthesis. On the basis of the collected data of a multi-technique analysis, it is proposed that the mode of formation of the nanocomposite involves the co-assembly of silicate-surfactant admicelles on opposite sides of graphene oxide platelets acting thereby as a template for growth of vertical mesopores off the platelet surface. These composites showed semiconductive behavior with electrical conductivity sensitively responding to analyte vapor exposure. The discovery of graphene oxide-periodic mesoporous silica sandwich nanocomposites will provide new opportunities for research that exploits the synergism of the graphene oxide and periodic mesoporous silica parts.

PubMed Disclaimer

Publication types

LinkOut - more resources