Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;13(3):792-7.
doi: 10.1111/j.1462-2920.2010.02382.x. Epub 2010 Nov 22.

Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria

Affiliations

Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria

Annemieke van der Wal et al. Environ Microbiol. 2011 Mar.

Abstract

We present a continuous model for the diffusion of sugars across intact plant leaf cuticles. It is based on the flow of sugars from a source, representing the leaf apoplast, to a sink, in the shape of a hemispherical drop of water on the outside of the cuticle. Flow is a function of the difference between sugar concentrations C(Source) and C(Sink) , permeability P of the cuticle, volume V(Sink) of the water drop, as well as its contact angle α with the cuticle surface. Using a bacterial bioreporter for fructose, and a two-compartment experimental set-up consisting of isolated cuticles of walnut (Juglans regia) carrying water droplets while floating on solutions with increasing concentrations of fructose, we determined a value of 1 × 10⁻⁶ m h⁻¹ for P. Using this value, we explored different scenarios for the leaching of sugars across plant leaf cuticles to reveal in quantitative terms how diffusion takes longer when V(Sink) increases, P decreases or α increases. Bacterial growth was modelled as a function of changes in P, α and V(Sink) and was consistent with observations or suggestions from the literature in relation to the availability of free water on leaves. These results are discussed in the light of bacteria as ecosystem engineers, i.e. with the ability to modify the plant leaf surface environment in favour of their own survival, e.g. by increasing cuticle leakage or leaf wetness. Our model represents a first step towards a more comprehensive model which will enhance our quantitative understanding of the factors that play a role in nutrient availability to bacterial colonizers of the phyllosphere, or plant leaf surface.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources