Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 19:3:110.
doi: 10.1186/1756-3305-3-110.

Molecular epidemiology of Plasmodium species prevalent in Yemen based on 18 s rRNA

Affiliations

Molecular epidemiology of Plasmodium species prevalent in Yemen based on 18 s rRNA

Abdulsalam Mq Al-Mekhlafi et al. Parasit Vectors. .

Abstract

Background: Malaria is an endemic disease in Yemen and is responsible for 4.9 deaths per 100,000 population per year and 43,000 disability adjusted life years lost. Although malaria in Yemen is caused mainly by Plasmodium falciparum and Plasmodium vivax, there are no sequence data available on the two species. This study was conducted to investigate the distribution of the Plasmodium species based on the molecular detection and to study the molecular phylogeny of these parasites.

Methods: Blood samples from 511 febrile patients were collected and a partial region of the 18 s ribosomal RNA (18 s rRNA) gene was amplified using nested PCR. From the 86 positive blood samples, 13 Plasmodium falciparum and 4 Plasmodium vivax were selected and underwent cloning and, subsequently, sequencing and the sequences were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods.

Results: Malaria was detected by PCR in 86 samples (16.8%). The majority of the single infections were caused by P. falciparum (80.3%), followed by P. vivax (5.8%). Mixed infection rates of P. falciparum + P. vivax and P. falciparum + P. malariae were 11.6% and 2.3%, respectively. All P. falciparum isolates were grouped with the strain 3D7, while P. vivax isolates were grouped with the strain Salvador1. Phylogenetic trees based on 18 s rRNA placed the P. falciparum isolates into three sub-clusters and P. vivax into one cluster. Sequence alignment analysis showed 5-14.8% SNP in the partial sequences of the 18 s rRNA of P. falciparum.

Conclusions: Although P. falciparum is predominant, P. vivax, P. malariae and mixed infections are more prevalent than has been revealed by microscopy. This overlooked distribution should be considered by malaria control strategy makers. The genetic polymorphisms warrant further investigation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Neighbor-Joining (NJ) tree, constructed based on the nucleotide sequences of 18 s rRNA, displaying the relationships of 17 sequences representing 13 P. Falciparum isolates and 4 sequences representing 4 P. Vivax isolates. Bootstrap support of more than 80% is indicated. Bold-type represents reference sequences for Plasmodium species from GenBank.
Figure 2
Figure 2
Neighbor-Joining (NJ) tree, constructed based on the nucleotide sequences representing the different types of 18 s rRNA (A, O or S type) from GeneBank and 13 sequences representing 13 P. falciparum isolates and 4 sequences representing 4 P. Vivax isolates from this study. Bootstrap support of more than 90% is indicated. Bold-type represents reference sequences for Plasmodium species from GenBank.

Similar articles

Cited by

References

    1. WHO. World Malaria Report. World Health Organization; 2005.
    1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–217. doi: 10.1038/nature03342. - DOI - PMC - PubMed
    1. Sachs J, Malaney P. The economic and social burden of malaria. Nature. 2002;415:680–685. doi: 10.1038/415680a. - DOI - PubMed
    1. Nishimoto Y, Arisue N, Kawai S, Escalante AA, Horii T, Tanabe K, Hashimoto T. Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol. 2008;47:45–53. doi: 10.1016/j.ympev.2008.01.031. - DOI - PubMed
    1. Escalante AA, Ayala FJ. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci USA. 1995;92:5793–5797. doi: 10.1073/pnas.92.13.5793. - DOI - PMC - PubMed

LinkOut - more resources