Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2010 Nov 12;2(11):81.
doi: 10.1186/gm202.

Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data?

Affiliations
Editorial

Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data?

Takayuki Iwamoto et al. Genome Med. .

Abstract

A large number of prognostic and predictive signatures have been proposed for breast cancer and a few of these are now available in the clinic as new molecular diagnostic tests. However, several other signatures have not fared well in validation studies. Some investigators continue to be puzzled by the diversity of signatures that are being developed for the same purpose but that share few or no common genes. The history of empirical development of prognostic gene signatures and the unique association between molecular subsets and clinical phenotypes of breast cancer explain many of these apparent contradictions in the literature. Three features of breast cancer gene expression contribute to this: the large number of individually prognostic genes (differentially expressed between good and bad prognosis cases); the unstable rankings of differentially expressed genes between datasets; and the highly correlated expression of informative genes.

PubMed Disclaimer

References

    1. Varadhachary GR, Talantov D, Raber MN, Meng C, Hess KR, Jatkoe T, Lenzi R, Spigel DR, Wang Y, Greco FA, Abbruzzese JL, Hainsworth JD. Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation. J Clin Oncol. 2008;26:4442–4448. doi: 10.1200/JCO.2007.14.4378. - DOI - PubMed
    1. Pusztai L, Ayers M, Stec J, Clark E, Hess K, Stivers D, Damokosh A, Sneige N, Buchholz TA, Esteva FJ, Arun B, Cristofanilli M, Booser D, Rosales M, Valero V, Adams C, Hortobagyi GN, Symmans WF. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res. 2003;9:2406–2415. - PubMed
    1. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, Meltzer PS. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 2001;61:5979–5984. - PubMed
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein P Lonning, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. - DOI - PMC - PubMed
    1. Weigelt B, Mackay A, A'Hern R, Natrajan R, Tan DS, Dowsett M, Ashworth A, Reis-Filho JS. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11:339–349. doi: 10.1016/S1470-2045(10)70008-5. - DOI - PubMed

Publication types