Pegylated interferon alpha targets Wnt signaling by inducing nuclear export of β-catenin
- PMID: 21093092
- PMCID: PMC3052972
- DOI: 10.1016/j.jhep.2010.07.020
Pegylated interferon alpha targets Wnt signaling by inducing nuclear export of β-catenin
Abstract
Background & aims: Pegylated-Interferon-α2a (peg-IFN), a first line therapy for Hepatitis C virus (HCV) patients, also impacts the recurrence of hepatocellular carcinoma (HCC). The activation of the Wnt pathway due to β-catenin gene mutations contributes to the development of a significant subset of HCC. Herein, we explored the effect of peg-IFN on Wnt/β-catenin signaling in vitro and in vivo.
Methods: Multiple human hepatoma cell lines were treated with Peg-IFN to assess its effect on the Wnt pathway and the mechanisms involved. Transgenic (TG) mice expressing stable β-catenin mutant in the liver were exposed to diethylnitrosamine (DEN) and treated with peg-IFN.
Results: In vitro, peg-IFN decreased the transcriptional activity of β-catenin/Tcf and did so independently of JAK/Stat signaling. Peg-IFN treatment led to increased mRNA and protein expression of RanBP3, a known β-catenin nuclear export factor, in all hepatoma cells. Co-precipitation studies showed an increased association between RanBP3 and β-catenin after peg-IFN treatment. The siRNA-mediated RanBP3 knockdown abrogated Peg-IFN-induced decrease in TOPFlash reporter activity. In vivo, Peg-IFN treatment led to increased nuclear RanBP3, decreased nuclear β-catenin and cyclin D1, and decreased cytoplasmic glutamine synthetase. Increased association of RanBP3 and β-catenin was also observed in vivo in response to Peg-IFN that led to decreased hepatocyte proliferation.
Conclusions: Peg-IFN inhibits β-catenin signaling through the up-regulation of RanBP3, which may be a contributory mechanism for the delayed HCC and improved survival in treated HCV patients. This observation might have chemo-preventive or chemo-therapeutic implications in tumor with aberrant Wnt pathway activation.
Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Figures




References
-
- Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006 Dec;5(12):997–1014. - PubMed
-
- Cadoret A, Ovejero C, Terris B, Souil E, Levy L, Lamers WH, et al. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002 Nov 28;21(54):8293–8301. - PubMed
-
- Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proceedings of the National Academy of Sciences of the United States of America. 2004 Dec 7;101(49):17216–17221. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources