Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 1;48(3):639-46.
doi: 10.1016/j.bone.2010.11.010. Epub 2010 Nov 18.

Subchondral cysts create increased intra-osseous stress in early knee OA: A finite element analysis using simulated lesions

Affiliations

Subchondral cysts create increased intra-osseous stress in early knee OA: A finite element analysis using simulated lesions

David D McErlain et al. Bone. .

Abstract

Aim of study: To investigate the role of intra-osseous lesions in advancing the pathogenesis of Osteoarthritis (OA) of the knee, using Finite Element Modeling (FEM) in conjunction with high-resolution imaging techniques.

Methods: Twenty early stage OA patients (≤ Grade 2 radiographic score) were scanned with a prototype, cone-beam CT system. Scans encompassed the mid-shaft of the femur to the diaphysis of the proximal tibia. Individual bones were segmented to create 3D geometric models that were transferred to FE software for loading experiments. Patient-specific, inhomogeneous material properties were derived from the CT images and mapped directly to the FE models. Duplicate models were also created, with a 3D sphere (range 3-12 mm) introduced into a weight-bearing region of the joint, mimicking the size, location, and composition of a subchondral bone cyst (SBC). A spherical shell extending 1mm radially around the SBC served as the sample volume for measurements of von Mises equivalent stress. Both models were vertically loaded with 750 N, or approximately 1 body weight during a single-leg stance.

Results: All FE models exhibited a physiologically realistic weight-bearing distribution of stress, which initiated at the joint surface and extended to the cortical bone. Models that contained the SBC experienced a nearly two-fold increase in stress (0.934 ± 0.073 and 1.69 ± 0.159 MPa, for the non-SBC and SBC models, respectively) within the bone adjacent to the SBC. In addition, there was a positive correlation found between the diameter of the SBC and the resultant intra-osseous stress under load (p = 0.004).

Conclusions: Our results provide insights into the mechanism by which SBC may accelerate OA, leading to greater pain and disability. Based on these findings, we feel that patient-derived FE models of the OA knee - utilizing in vivo imaging data - present a tremendous potential for monitoring joint mechanics under physiological loads.

PubMed Disclaimer

Publication types

LinkOut - more resources